List of Observables

The following is a list of observables that is available in EOS v1.0.13.

Observables in (semi)leptonic \(b\)-hadron decays

Observables in \(B^-\to \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B_c->lnu::BR

\(\mathcal{B}(B_c^- \to \ell^-\bar\nu)\)

B_u->lnu::BR

\(\mathcal{B}(B^- \to \ell^-\bar\nu)\)

The option “l” selects the charged lepton flavor.

Observables in \(B^-\to \ell^-\bar\nu\ell'^+\ell'^-\) decays

Qualified Name

Description

Kinematic Variables

B_u->enumumu::A_FB

\(A_{\mathrm{FB}}(B^- \to e^-\bar\nu\mu^+\mu^-)\)

q2_min, q2_max, k2_min, k2_max

B_u->enumumu::BR

\(\mathcal{B}(B^- \to e^-\bar\nu\mu^+\mu^-)\)

q2_min, q2_max, k2_min, k2_max

B_u->enumumu::d2BR/dq2/dk2

\(\frac{d\mathcal{B}(B^- \to e^-\bar\nu\mu^+\mu^-)}{dq^2/dk^2}\)

q2, k2

B_u->munuee::A_FB

\(A_{\mathrm{FB}}(B^- \to \mu^-\bar\nu e^+e^-)\)

q2_min, q2_max, k2_min, k2_max

B_u->munuee::BR

\(\mathcal{B}(B^- \to \mu^-\bar\nu e^+e^-)\)

q2_min, q2_max, k2_min, k2_max

B_u->munuee::d2BR/dq2/dk2

\(\frac{d\mathcal{B}(B^- \to \mu^-\bar\nu e^+e^-)}{dq^2/dk^2}\)

q2, k2

B_u->taunuee::A_FB

\(A_{\mathrm{FB}}(B^- \to \tau^-\bar\nu e^+e^-)\)

q2_min, q2_max, k2_min, k2_max

B_u->taunuee::BR

\(\mathcal{B}(B^- \to \tau^-\bar\nu e^+e^-)\)

q2_min, q2_max, k2_min, k2_max

B_u->taunuee::d2BR/dq2/dk2

\(\frac{d\mathcal{B}(B^- \to \tau^-\bar\nu e^+e^-)}{dq^2/dk^2}\)

q2, k2

B_u->taunumumu::A_FB

\(A_{\mathrm{FB}}(B^- \to \tau^-\bar\nu\mu^+\mu^-)\)

q2_min, q2_max, k2_min, k2_max

B_u->taunumumu::BR

\(\mathcal{B}(B^- \to \tau^-\bar\nu\mu^+\mu^-)\)

q2_min, q2_max, k2_min, k2_max

B_u->taunumumu::d2BR/dq2/dk2

\(\frac{d\mathcal{B}(B^- \to \tau^-\bar\nu\mu^+\mu^-)}{dq^2/dk^2}\)

q2, k2

The option “l” selects the charged lepton flavour coming out of the weak current, “lprime” selects the lepton flavour coming out of the photon.

Observables in \(B\to \pi \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B->pilnu::A_FB

\(A_{\mathrm{FB}}(B\to \pi\ell^-\bar\nu)\)

q2_min, q2_max

B->pilnu::A_FB(q2)

\(A_{\mathrm{FB}}(B\to \pi\ell^-\bar\nu)(q^2)\)

q2

B->pilnu::A_l

n/a

q2_min, q2_max

B->pilnu::BR

\(\mathcal{B}(B\to\pi\ell^-\bar\nu)\)

q2_min, q2_max

B->pilnu::F_H

n/a

q2_min, q2_max

B->pilnu::P(q2)

\(dP(B\to\pi\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B->pilnu::P(q2_min,q2_max)

\(P(B\to\pi\ell^-\bar\nu)\)

q2_min, q2_max

B->pilnu::R_pi

\(R_{\pi}\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

B->pilnu::R_pi(q2)

\(R_{\pi}(q^2)\)

q2

B->pilnu::R_pi_0

\(R_{\pi, 0}\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

B->pilnu::R_pi_p

\(R_{\pi, P}\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

B->pilnu::dBR/dq2

\(d\mathcal{B}(B\to\pi\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B->pilnu::d^2BR/dq2/dcos(theta_l)

\(d^2\mathcal{B}(B\to\pi\ell^-\bar\nu)/dq^2/d\cos(\theta_l)\, \left[ \textrm{GeV}^{-2} \right]\)

q2, cos(theta_l)

B->pilnu::width

\(\Gamma(B\to\pi\ell^-\bar\nu)\)

q2_min, q2_max

B->pilnu::width_0

\(\Gamma(B\to\pi\ell^-\bar\nu)_0\)

q2_min, q2_max

B->pilnu::width_p

\(\Gamma(B\to\pi\ell^-\bar\nu)_p\)

q2_min, q2_max

B->pilnu::zeta

n/a

q2_min, q2_max

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor. The option “form-factors” selects the form factor parametrization.

Observables in \(B\to \bar{D} \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B->Dlnu::A_FB

\(A_{\mathrm{FB}}(B\to \bar{D}\ell^-\bar\nu)\)

q2_min, q2_max

B->Dlnu::A_FB(q2)

\(A_{\mathrm{FB}}(B\to \bar{D}\ell^-\bar\nu)(q^2)\)

q2

B->Dlnu::A_l

n/a

q2_min, q2_max

B->Dlnu::BR

\(\mathcal{B}(B\to \bar{D}\ell^-\bar\nu)\)

q2_min, q2_max

B->Dlnu::P(w)

n/a

w

B->Dlnu::P(w_min,w_max)

n/a

w_min, w_max

B->Dlnu::R_D

\(R_D\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

B->Dlnu::R_D(q2)

\(R_D(q^2)\)

q2

B->Dlnu::dBR/dq2

\(d\mathcal{B}(B\to \bar{D}\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B->Dlnu::d^2BR/dq2/dcos(theta_l)

\(d^2\mathcal{B}(B\to \bar{D}\ell^-\bar\nu)/dq^2/d\cos(\theta_l)\, \left[ \textrm{GeV}^{-2} \right]\)

q2, cos(theta_l)

B->Dlnu::normBR

n/a

q2_min, q2_max

B->Dlnu::normdBR/ds

n/a

q2

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor. The option “form-factors” selects the form factor parametrization.

Observables in \(B_s\to \bar{K} \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B_s->Klnu::BR

\(\mathcal{B}(\bar{B}_s\to K\ell^-\bar\nu)\)

q2_min, q2_max

B_s->Klnu::dBR/dq2

\(d\mathcal{B}(\bar{B}_s\to K\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B_s->Klnu::normBR

n/a

q2_min, q2_max

B_s->Klnu::normdBR/ds

n/a

q2

The option “l” selects the charged lepton flavor.The option “form-factors” selects the form factor parametrization.

Observables in \(B_s\to \bar{D_s} \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B_s->D_slnu::A_FB

\(A_{\mathrm{FB}}(B_s\to \bar{D}_s\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_slnu::A_FB(q2)

\(A_{\mathrm{FB}}(B_s\to \bar{D}_s\ell^-\bar\nu)(q^2)\)

q2

B_s->D_slnu::A_l

n/a

q2_min, q2_max

B_s->D_slnu::BR

\(\mathcal{B}(B_s\to \bar{D}_s\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_slnu::P(w)

n/a

w

B_s->D_slnu::P(w_min,w_max)

n/a

w_min, w_max

B_s->D_slnu::R_D_s

\(R_{D_s}\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

B_s->D_slnu::R_D_s(q2)

\(R_{D_s}(q^2)\)

q2

B_s->D_slnu::dBR/dq2

\(d\mathcal{B}(B_s\to \bar{D}_s\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B_s->D_slnu::normBR

n/a

q2_min, q2_max

B_s->D_slnu::normdBR/ds

n/a

q2

The option “l” selects the charged lepton flavor.The option “form-factors” selects the form factor parametrization.

Observables in \(B\to \omega \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B->omegalnu::BR

\(\mathcal{B}(B\to\omega\ell^-\bar\nu)\)

q2_min, q2_max

B->omegalnu::dBR/dq2

\(d\mathcal{B}(B\to\omega\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor. The option “form-factors” selects the form factor parametrization.

Observables in \(B\to \rho \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B->rholnu::BR

\(\mathcal{B}(B\to\rho\ell^-\bar\nu)\)

q2_min, q2_max

B->rholnu::dBR/dq2

\(d\mathcal{B}(B\to\rho\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor. The option “form-factors” selects the form factor parametrization.

Observables in \(B\to \bar{D}^* \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B->D^*lnu::A_1c

\(A_{1c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_1s

\(A_{1s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_2c

\(A_{2c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_2s

\(A_{2s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_3

\(A_3(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_4

\(A_4(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_5

\(A_5(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_6c

\(A_{6c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_6s

\(A_{6s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_7

\(A_7(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_8

\(A_8(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_9

\(A_9(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_C^1

\(A_{\mathrm{C}}^1(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::A_C^2

\(A_{\mathrm{C}}^2(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::A_C^3

\(A_{\mathrm{C}}^3(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::A_FB

\(A_{\mathrm{FB}}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::A_FB(q2)

\(A_{\mathrm{FB}}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::A_FB_CP_specific

\(A_{\mathrm{FB}}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::A_L

n/a

q2_min, q2_max

B->D^*lnu::A_T

n/a

q2_min, q2_max

B->D^*lnu::A_T^1

\(A_{\mathrm{T}}^1(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::A_T^2

\(A_{\mathrm{T}}^2(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::A_T^3

\(A_{\mathrm{T}}^3(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::Abar_FB

\(\bar{A}_{\mathrm{FB}}(B\to \bar{D}^*\ell^-\bar\nu)_{\ell=e,\mu}\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::BR

\(\bar{\mathcal{B}}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::BR_CP_specific

\(\mathcal{B}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::BRbar

\(\mathcal{B}(B\to \bar{D}^*\ell^-\bar\nu)_{\ell=e,\mu}\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::DeltaA_FB

n/a

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::DeltaBR

\(\Delta\mathcal{B}(B\to \bar{D}^*\ell^-\bar\nu)_{\ell=e,\mu}\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::DeltaF_L

n/a

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::DeltaFtilde_L

n/a

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::DeltaP(w_min,w_max)

n/a

w_max, w_min

B->D^*lnu::DeltaS_3

n/a

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::F_L

\(F_{\mathrm{L}}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::F_L_CP_specific

\(F_{\mathrm{L}}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::Fbar_L

\(\bar{F}_{\mathrm{L}}(B\to \bar{D}^*\ell^-\bar\nu)_{\ell=e,\mu}\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::Ftilde_L

\(\tilde{F}_{\mathrm{L}}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::Ftilde_L_CP_specific

\(\tilde{F}_{\mathrm{L}}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::Ftildebar_L

\(\bar{\tilde{F}}_{\mathrm{L}}(B\to \bar{D}^*\ell^-\bar\nu)_{\ell=e,\mu}\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::J_1c

\(J_{1c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_1c(q2)

\(J_{1c}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_1s

\(J_{1s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_1s(q2)

\(J_{1s}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_2c

\(J_{2c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_2c(q2)

\(J_{2c}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_2s

\(J_{2s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_2s(q2)

\(J_{2s}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_3

\(J_{3}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_3(q2)

\(J_{3}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_4

\(J_{4}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_4(q2)

\(J_{4}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_5

\(J_{5}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_5(q2)

\(J_{5}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_6c

\(J_{6c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_6c(q2)

\(J_{6c}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_6s

\(J_{6s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_6s(q2)

\(J_{6s}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_7

\(J_{7}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_7(q2)

\(J_{7}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_8

\(J_{8}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_8(q2)

\(J_{8}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::J_9

\(J_{9}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_min, q2_max

B->D^*lnu::J_9(q2)

\(J_{9}(B\to \bar{D}^*\ell^-\bar\nu)(q^2)\)

q2

B->D^*lnu::P(w_min,w_max)

n/a

w_min, w_max

B->D^*lnu::Pbar(w_min,w_max)

n/a

w_max, w_min

B->D^*lnu::R_D^*

\(R_{D^*}\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

B->D^*lnu::R_{D^*}^{e/mu}(q2)

\(R_{D^*}^{e/\mu}(q^2)\)

q2

B->D^*lnu::R_{D^*}^{tau/mu}(q2)

\(R_{D^*}^{\tau/\mu}(q^2)\)

q2

B->D^*lnu::S_1c

\(S_{1c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_1s

\(S_{1s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_2c

\(S_{2c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_2s

\(S_{2s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_3

\(S_3(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_4

\(S_4(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_5

\(S_5(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_6c

\(S_{6c}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_6s

\(S_{6s}(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_7

\(S_7(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_8

\(S_8(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::S_9

\(S_9(B\to \bar{D}^*\ell^-\bar\nu)\)

q2_max, q2_min

B->D^*lnu::Sbar_3

n/a

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->D^*lnu::dBR/dq2

\(d\mathcal{B}(B\to \bar{D}^*\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B->D^*lnu::normBR

n/a

q2_min, q2_max

B->D^*lnu::normGamma

\(\bar{\Gamma}(B\to \bar{D}^*\ell^-\bar\nu)_{|V_{cb}|=1}\)

q2_max, q2_min

B->D^*lnu::normGamma_CP_specific

\(\Gamma(B\to \bar{D}^*\ell^-\bar\nu)_{|V_{cb}|=1}\)

q2_min, q2_max

B->D^*lnu::normdBR/dq2

n/a

q2

B->Dpilnu::A_l

n/a

q2_min, q2_max

B->Dpilnu::P(cos(theta_D))

n/a

cos(theta_D)

B->Dpilnu::P(cos(theta_D)_min,cos(theta_D)_max)

n/a

cos(theta_D)_min, cos(theta_D)_max

B->Dpilnu::P(cos(theta_l))

n/a

cos(theta_l)

B->Dpilnu::P(cos(theta_l)_min,cos(theta_l)_max)

n/a

cos(theta_l)_min, cos(theta_l)_max

B->Dpilnu::P(phi)

n/a

phi

B->Dpilnu::P(phi_min,phi_max)

n/a

phi_min, phi_max

B->Dpilnu::P(q2)

n/a

q2

B->Dpilnu::P(w)

n/a

w

B->Dpilnu::P(w_min,w_max)

n/a

w_min, w_max

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor. The option “form-factors” selects the form factor parametrization.

Observables in \(B_u \to \gamma \ell \nu_{\ell}\) decays

Qualified Name

Description

Kinematic Variables

B_u->gammalnu::A_FB(E_gamma_min)

\(A_{\mathrm{FB}}(B^- \to \gamma \ell^-\bar\nu)\)

E_gamma_min

B_u->gammalnu::BR(E_gamma_min)

\(\mathcal{B}(B^- \to \gamma \ell^-\bar\nu)\)

E_gamma_min

The option “form-factors” selects the form factor parametrization.

Observables in \(B_s\to \bar{K}^* \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B_s->K^*lnu::A_C^1

\(A_{\mathrm{C}}^1(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::A_C^2

\(A_{\mathrm{C}}^2(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::A_C^3

\(A_{\mathrm{C}}^3(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::A_FB

\(A_{\mathrm{FB}}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::A_FB(q2)

\(A_{\mathrm{FB}}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::A_L

\(A_L(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::A_T

\(A_T(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::A_T^1

\(A_{\mathrm{T}}^1(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::A_T^2

\(A_{\mathrm{T}}^2(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::A_T^3

\(A_{\mathrm{T}}^3(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::BR

\(\mathcal{B}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::F_L

\(F_{\mathrm{L}}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_1c

\(J_{1c}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_1c(q2)

\(J_{1c}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_1s

\(J_{1s}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_1s(q2)

\(J_{1s}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_2c

\(J_{2c}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_2c(q2)

\(J_{2c}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_2s

\(J_{2s}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_2s(q2)

\(J_{2s}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_3

\(J_{3}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_3(q2)

\(J_{3}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_4

\(J_{4}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_4(q2)

\(J_{4}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_5

\(J_{5}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_5(q2)

\(J_{5}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_6c

\(J_{6c}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_6c(q2)

\(J_{6c}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_6s

\(J_{6s}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_6s(q2)

\(J_{6s}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_7

\(J_{7}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_7(q2)

\(J_{7}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_8

\(J_{8}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_8(q2)

\(J_{8}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::J_9

\(J_{9}(B_s\to \bar{K}^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->K^*lnu::J_9(q2)

\(J_{9}(B_s\to \bar{K}^*\ell^-\bar\nu)(q^2)\)

q2

B_s->K^*lnu::P(w_min,w_max)

n/a

w_min, w_max

B_s->K^*lnu::dBR/dq2

\(d\mathcal{B}(B_s\to \bar{K}^*\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B_s->K^*lnu::normBR

n/a

q2_min, q2_max

B_s->K^*lnu::normdBR/dq2

\(d\mathcal{B}(B_s\to \bar{K}^*\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

The option “l” selects the charged lepton flavor. The option “form-factors” selects the form factor parametrization.

Observables in \(\bar{B}_s\to D_s^* \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B_s->D_s^*lnu::A_C^1

\(A_{\mathrm{C}}^1(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::A_C^2

\(A_{\mathrm{C}}^2(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::A_C^3

\(A_{\mathrm{C}}^3(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::A_FB

\(A_{\mathrm{FB}}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::A_FB(q2)

\(A_{\mathrm{FB}}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::A_L

\(A_L(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::A_T

\(A_T(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::A_T^1

\(A_{\mathrm{T}}^1(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::A_T^2

\(A_{\mathrm{T}}^2(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::A_T^3

\(A_{\mathrm{T}}^3(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::BR

\(\mathcal{B}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::F_L

\(F_{\mathrm{L}}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_1c

\(J_{1c}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_1c(q2)

\(J_{1c}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_1s

\(J_{1s}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_1s(q2)

\(J_{1s}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_2c

\(J_{2c}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_2c(q2)

\(J_{2c}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_2s

\(J_{2s}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_2s(q2)

\(J_{2s}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_3

\(J_{3}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_3(q2)

\(J_{3}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_4

\(J_{4}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_4(q2)

\(J_{4}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_5

\(J_{5}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_5(q2)

\(J_{5}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_6c

\(J_{6c}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_6c(q2)

\(J_{6c}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_6s

\(J_{6s}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_6s(q2)

\(J_{6s}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_7

\(J_{7}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_7(q2)

\(J_{7}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_8

\(J_{8}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_8(q2)

\(J_{8}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::J_9

\(J_{9}(B_s\to \bar{D}_s^*\ell^-\bar\nu)\)

q2_min, q2_max

B_s->D_s^*lnu::J_9(q2)

\(J_{9}(B_s\to \bar{D}_s^*\ell^-\bar\nu)(q^2)\)

q2

B_s->D_s^*lnu::P(w_min,w_max)

n/a

w_min, w_max

B_s->D_s^*lnu::R_D_s^*

\(R_{D_s^*}\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

B_s->D_s^*lnu::R_D_s^*(q2)

\(R_{D_s^*}(q^2)\)

q2

B_s->D_s^*lnu::dBR/dq2

\(d\mathcal{B}(B_s\to \bar{D}_s^*\ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B_s->D_s^*lnu::normBR

n/a

q2_min, q2_max

B_s->D_s^*lnu::normdBR/dq2

n/a

q2

The option “l” selects the charged lepton flavor.The option “form-factors” selects the form factor parametrization.

Observables in \(B\to \pi\pi \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B->pipilnu::A_FB

\(A_{\mathrm{FB}}(B\to \pi\pi \ell^-\bar\nu)\)

q2_min, q2_max, k2_min, k2_max

B->pipilnu::A_FB(q2,k2)

\(A_{\mathrm{FB}}(B\to \pi\pi \ell^-\bar\nu)(q^2,k^2)\, \left[ \textrm{GeV}^{-4} \right]\)

q2, k2

B->pipilnu::BR

\(\mathcal{B}(B\to \pi\pi \ell^-\bar\nu)\)

q2_min, q2_max, k2_min, k2_max, z_min, z_max

B->pipilnu::BR(q2,k2)

\(d^2\mathcal{B}(B\to \pi\pi \ell^-\bar\nu)/(dq^2\,dk^2)\, \left[ \textrm{GeV}^{-4} \right]\)

q2, k2

B->pipilnu::BR(q2,k2,cos(theta_pi))

n/a

q2, k2, cos(theta_pi)

B->pipilnu::P(cos(theta_pi))

n/a

q2, k2, cos(theta_pi)

The option “l” selects the charged lepton flavor. The option “form-factors” selects the form factor parametrization.

Observables in \(\Lambda_b\to \Lambda_c \ell^-\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

Lambda_b->Lambda_c(2595)lnu::A_FB

\(A_\mathrm{FB}(\Lambda_b\to\Lambda_c(2595) \ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_c(2595)lnu::BR

\(\mathcal{B}(\Lambda_b\to\Lambda_c(2595) \ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_c(2595)lnu::Gamma_normalized(q2_min,q2_max)

n/a

q2_min, q2_max

Lambda_b->Lambda_c(2595)lnu::R_Lambda_c(2595)

\(R_{\Lambda_c(2595)}\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

Lambda_b->Lambda_c(2595)lnu::R_Lambda_c(2595)(q2)

\(R_{\Lambda_c(2595)}(q^2)\)

q2

Lambda_b->Lambda_c(2595)lnu::dBR/ds

\(d\mathcal{B}/dq^2(\Lambda_b\to\Lambda_c(2595) \ell^-\bar\nu)\, \left[ \textrm{GeV}^{-2} \right]\)

q2

Lambda_b->Lambda_c(2595)lnu::dBR/dsdcos(theta_l)

n/a

q2, cos(theta_l)

Lambda_b->Lambda_c(2625)lnu::A_FB

\(A_\mathrm{FB}(\Lambda_b\to\Lambda_c(2625) \ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_c(2625)lnu::A_FB(q2)

\(A_\mathrm{FB}(\Lambda_b\to\Lambda_c(2625) \ell^-\bar\nu)(q^2)\)

q2

Lambda_b->Lambda_c(2625)lnu::BR

\(\mathcal{B}(\Lambda_b\to\Lambda_c(2625) \ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_c(2625)lnu::Gamma_normalized(q2_min,q2_max)

n/a

q2_min, q2_max

Lambda_b->Lambda_c(2625)lnu::R_Lambda_c(2625)

\(R_{\Lambda_c(2625)}\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

Lambda_b->Lambda_c(2625)lnu::R_Lambda_c(2625)(q2)

\(R_{\Lambda_c(2625)}(q^2)\)

q2

Lambda_b->Lambda_c(2625)lnu::dBR/ds

\(d\mathcal{B}/dq^2(\Lambda_b\to\Lambda_c(2625) \ell^-\bar\nu)\, \left[ \textrm{GeV}^{-2} \right]\)

q2

Lambda_b->Lambda_c(2625)lnu::dBR/dsdcos(theta_l)

n/a

q2, cos(theta_l)

Lambda_b->Lambda_clnu::A_FB^c

n/a

q2_min, q2_max

Lambda_b->Lambda_clnu::A_FB^c(q2)

\(A_{\mathrm{FB}}^{h\ell}(\Lambda_b\to\Lambda_c \ell^-\bar\nu)(q^2)\)

q2

Lambda_b->Lambda_clnu::A_FB^h

n/a

q2_min, q2_max

Lambda_b->Lambda_clnu::A_FB^h(q2)

\(A_{\mathrm{FB}}^h(\Lambda_b\to\Lambda_c \ell^-\bar\nu)(q^2)\)

q2

Lambda_b->Lambda_clnu::A_FB^l

n/a

q2_min, q2_max

Lambda_b->Lambda_clnu::A_FB^l(q2)

\(A_{\mathrm{FB}}^\ell(\Lambda_b\to\Lambda_c \ell^-\bar\nu)(q^2)\)

q2

Lambda_b->Lambda_clnu::BR

\(\mathcal{B}(\Lambda_b\to\Lambda_c \ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::F_0

n/a

q2_min, q2_max

Lambda_b->Lambda_clnu::F_0(q2)

\(F_0(\Lambda_b\to\Lambda_c \ell^-\bar\nu)(q^2)\)

q2

Lambda_b->Lambda_clnu::K_1c

\(K_{1c}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_1cc

\(K_{1cc}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_1ss

\(K_{1ss}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_2c

\(K_{2c}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_2cc

\(K_{2cc}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_2ss

\(K_{2ss}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_3s

\(K_{3s}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_3sc

\(K_{3sc}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_4s

\(K_{4s}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::K_4sc

\(K_{4sc}(\Lambda_b\to\Lambda_c(\to \Lambda\pi)\ell^-\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambda_clnu::R(A_FB^h)

\(R(A_{\mathrm{FB}}^{\Lambda_c})\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

Lambda_b->Lambda_clnu::R(A_FB^h)(q2)

\(R(A_{\mathrm{FB}}^{\Lambda_c})(q^2)\)

q2

Lambda_b->Lambda_clnu::R(Lambda_c)

\(R(\Lambda_c)\)

q2_mu_max, q2_mu_min, q2_tau_max, q2_tau_min

Lambda_b->Lambda_clnu::dBR/dq2

\(d\mathcal{B}(\Lambda_b\to\Lambda_c \ell^-\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

The option “l” selects the charged lepton flavor. The option “form-factors” selects the form factor parametrization.

Miscellaneous

Qualified Name

Description

Kinematic Variables

B::M_B^*-M_B

\(M_{B^*} - M_B\, \left[ \textrm{GeV} \right]\)

Class-I Nonleptonic Heavy-to-Heavy Decays

Qualified Name

Description

Kinematic Variables

B^0->D^*+K^-::BR

\(\mathcal{B}(\bar{B}^0\to D^{*+}K^-)\)

B^0->D^+K^-::BR

\(\mathcal{B}(\bar{B}^0\to D^+K^-)\)

B_s^0->D_s^*+pi^-::BR

\(\mathcal{B}(\bar{B}_s^0\to D_s^{*+}\pi^-)\)

B_s^0->D_s^+pi^-::BR

\(\mathcal{B}(\bar{B}_s^0\to D_s^+\pi^-)\)

Observables in (semi)leptonic \(c\)-hadron decays

Observables in \(D_q^{(*)+}\to \ell^+\nu\) decays

Qualified Name

Description

Kinematic Variables

D->lnu::BR

\(\mathcal{B}(D^+ \to \ell^+\nu)\)

D^*->lnu::BR

\(\mathcal{B}(D^{*+} \to \ell^+\nu)\)

D_s->lnu::BR

\(\mathcal{B}(D_s^+ \to \ell^+\nu)\)

D_s^*->lnu::BR

\(\mathcal{B}(D_s^{*+} \to \ell^+\nu)\)

The option “l” selects the charged lepton flavor.

Observables in \(D\to K \ell^+ \nu\) decays

Qualified Name

Description

Kinematic Variables

D->Klnu::BR

\(\mathcal{B}(D\to K\ell^+ \nu)\)

q2_min, q2_max

D->Klnu::P(q2)

\(dP(D\to K\ell^+ \nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

D->Klnu::P(q2_min,q2_max)

\(P(D\to K\ell^+ \nu)\)

q2_min, q2_max

D->Klnu::dBR/dq2

\(d\mathcal{B}(D\to K\ell^+ \nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

D->Klnu::width

\(\Gamma(D\to K\ell^+ \nu)\)

q2_min, q2_max

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor. The option “form-factors” selects the form factor parametrization.

Observables in \(\Lambda_c \to \Lambda \ell^+ \nu\) decays

Qualified Name

Description

Kinematic Variables

Lambda_c->Lambdalnu::BR

\(\mathcal{B}(\Lambda_c^+ \to \Lambda \ell^+ \nu)\)

q2_min, q2_max

Lambda_c->Lambdalnu::dBR/dq2

\(d\mathcal{B}/dq^2(\Lambda_c^+ \to \Lambda \ell^+ \nu)\, \left[ \textrm{GeV}^{-2} \right]\)

q2

The option “l” selects the charged lepton flavor.

Observables in rare (semi)leptonic and radiative \(b\)-hadron decays

Observables in \(B_q \to \ell^+\ell^-\) decays

Qualified Name

Description

Kinematic Variables

B_q->ll::A_DeltaGamma

\(\mathcal{A}_{\Delta\Gamma}(B_q \to \ell^+\ell^-)\)

B_q->ll::BR

\(\mathcal{B}(B_q \to \ell^+\ell^-)\)

B_q->ll::BR@Untagged

\(\left\langle\mathcal{B}(B_q \to \ell^+\ell^-)\right\rangle\)

B_q->ll::S

\(\mathcal{S}(B_q \to \ell^+\ell^-)\)

B_q->ll::eff_lifetime

\(\langle\tau\rangle(B_q \to \ell^+\ell^-)\)

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor.

Observables in \(B_q \to P \psi\) decays

Qualified Name

Description

Kinematic Variables

B->Kpsi::BR

\(\mathcal{B}(\bar{B} \to \bar{K}\psi)\)

B->Kpsi::plus_phase

n/a

The option “q” selects the spectator quark flavor.

Observables in \(B_q \to V \psi\) decays

Qualified Name

Description

Kinematic Variables

B->K^*psi::BR

\(\mathcal{B}(\bar{B} \to \bar{K}^*\psi)\)

B->K^*psi::S_1c@LHCb

\(S_{1c}(\bar{B} \to \bar{K}^*\psi)\)

B->K^*psi::S_1s@LHCb

\(S_{1s}(\bar{B} \to \bar{K}^*\psi)\)

B->K^*psi::S_3@LHCb

\(S_{3}(\bar{B} \to \bar{K}^*\psi)\)

B->K^*psi::S_4@LHCb

\(S_{4}(\bar{B} \to \bar{K}^*\psi)\)

B->K^*psi::S_8@LHCb

\(S_{8}(\bar{B} \to \bar{K}^*\psi)\)

B->K^*psi::S_9@LHCb

\(S_{9}(\bar{B} \to \bar{K}^*\psi)\)

B->K^*psi::delta_para_long

n/a

B->K^*psi::delta_perp_long

n/a

B->K^*psi::long_phase

n/a

B->K^*psi::long_polarization

n/a

B->K^*psi::para_polarization

n/a

B->K^*psi::perp_polarization

n/a

B_s->phipsi::BR

\(\mathcal{B}(\bar{B}_s \to \phi\psi)\)

B_s->phipsi::delta_para_long

n/a

B_s->phipsi::delta_perp_long

n/a

B_s->phipsi::long_phase

n/a

B_s->phipsi::long_polarization

n/a

B_s->phipsi::para_polarization

n/a

B_s->phipsi::perp_polarization

n/a

The option “q” selects the spectator quark flavor.

Observables in \(B_q \to V \gamma\) decays

Qualified Name

Description

Kinematic Variables

B->K^*gamma::A_CP

\(A_\mathrm{CP}(\bar{B}\to \bar{K}^*\gamma)\)

B->K^*gamma::A_I

\(A_\mathrm{I}(\bar{B}\to \bar{K}^*\gamma)\)

B->K^*gamma::BR

\(\bar{\mathcal{B}}(\bar{B}\to \bar{K}^*\gamma)\)

B->K^*gamma::BR_CP_specific

\(\mathcal{B}(\bar{B}\to \bar{K}^*\gamma)\)

B->K^*gamma::C_K^*gamma

\(C_{K^*\gamma}\)

B->K^*gamma::Gamma_CP_specific

n/a

B->K^*gamma::Im{a_left}

n/a

B->K^*gamma::Im{a_right}

n/a

B->K^*gamma::Im{q_over_p}

n/a

B->K^*gamma::Re{a_left}

n/a

B->K^*gamma::Re{a_right}

n/a

B->K^*gamma::Re{q_over_p}

n/a

B->K^*gamma::S_K^*gamma

\(S_{K^*\gamma}\)

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor.

Observables in \(B_q \to P \ell^+\ell^-\) decays

Qualified Name

Description

Kinematic Variables

B->Kll::A_CP

\(A_\mathrm{CP}(\bar{B}\to \bar{K}\ell^+\ell^-)\)

q2_max, q2_min

B->Kll::A_FB

\(\bar A_\mathrm{FB}(\bar{B}\to \bar{K}\ell^+\ell^-)\)

q2_max, q2_min

B->Kll::A_FB(q2)

\(A_\mathrm{FB}(\bar{B}\to \bar{K}\ell^+\ell^-)(q^2)\)

q2

B->Kll::A_FB_CP_specific

\(A_\mathrm{FB}(\bar{B}\to \bar{K}\ell^+\ell^-)\)

q2_min, q2_max

B->Kll::BR

\(\bar{\mathcal{B}}(\bar{B}\to \bar{K}\ell^+\ell^-)\)

q2_max, q2_min

B->Kll::BR_CP_specific

\(\mathcal{B}(\bar{B}\to \bar{K}\ell^+\ell^-)\)

q2_min, q2_max

B->Kll::F_H

\(\bar F_\mathrm{H}(\bar{B}\to \bar{K}\ell^+\ell^-)\)

q2_max, q2_min

B->Kll::F_H(q2)

\(F_\mathrm{H}(\bar{B}\to \bar{K}\ell^+\ell^-)(q^2)\)

q2

B->Kll::F_H_CP_specific

\(F_\mathrm{H}(\bar{B}\to \bar{K}\ell^+\ell^-)\)

q2_min, q2_max

B->Kll::Gamma

\(\Gamma(\bar{B}\to \bar{K}\ell^+\ell^-)\, \left[ \textrm{GeV} \right]\)

q2_min, q2_max

B->Kll::NormalizedBR

\(\mathcal{B}(\bar{B}\to \bar{K}\ell^+\ell^-)/\mathcal{B}(\bar{B}\to \bar{K}J/\psi)\)

q2_max, q2_min

B->Kll::R_K

\(R_K\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->Kll::R_K(q2)

\(R_K(q^2)\)

q2

B->Kll::dBR/ds

\(d\mathcal{B}(\bar{B}\to \bar{K}\ell^+\ell^-)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B->Kll::d^2Gamma

\(d^2\mathcal{\Gamma(\bar{B}\to \bar{K}\ell^+\ell^-)}/(dq^2\, d\cos\theta_\ell)\, \left[ \textrm{GeV}^{-2} \right]\)

q2, cos(theta_l)

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor.

Observables in \(B_q \to V \ell^+\ell^-\) decays

Qualified Name

Description

Kinematic Variables

B->K^*ll::A_1c

\(A_{1c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_1s

\(A_{1s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_2c

\(A_{2c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_2s

\(A_{2s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_3

\(A_3(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_4

\(A_4(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_5

\(A_5(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_6c

\(A_{6c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_6s

\(A_{6s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_7

\(A_7(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_8

\(A_8(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_9

\(A_9(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_CP

\(\bar{A}_\mathrm{CP}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_FB

\(\bar{A}_\mathrm{FB}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_FB(q2)

\(A_\mathrm{FB}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::A_FB(q2)@LHCb

\(A_\mathrm{FB}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::A_FB@LHCb

\(A_\mathrm{FB}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_FB_CP_specific

\(A_\mathrm{FB}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::A_T^2

\(\bar{A}_T^2(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::A_T^2(q2)

n/a

q2

B->K^*ll::A_T^2_CP_specific

n/a

q2_min, q2_max

B->K^*ll::A_T^3

\(A_T^3(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::A_T^3(q2)

n/a

q2

B->K^*ll::A_T^4

\(A_T^4(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::A_T^4(q2)

n/a

q2

B->K^*ll::A_T^5

\(A_T^5(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::A_T^5(q2)

n/a

q2

B->K^*ll::A_T^im

\(\mathrm{Im}A_T(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::A_T^im(q2)

n/a

q2

B->K^*ll::A_T^re

\(\mathrm{Re}A_T(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::A_T^re(q2)

n/a

q2

B->K^*ll::Abar_FB

n/a

q2_min, q2_max

B->K^*ll::BR

\(\bar{\mathcal{B}}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::BR_CP_specific

\(\mathcal{B}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::F_L

\(\bar{F}_L(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::F_L(q2)

\(F_L(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::F_L_CP_specific

\(F_L(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::F_T

\(\bar{T}_L(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::F_T(q2)

\(F_T(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::F_T_CP_specific

\(F_T(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::Gamma

\(\Gamma(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::Gamma(q2)

\(\Gamma^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::Gamma_CP_specific

n/a

q2_min, q2_max

B->K^*ll::Gamma_CP_specific(q2)

n/a

q2

B->K^*ll::H_T^1

\(H_T^1(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::H_T^1(q2)

n/a

q2

B->K^*ll::H_T^2

\(H_T^2(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::H_T^2(q2)

n/a

q2

B->K^*ll::H_T^3

\(H_T^3(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::H_T^3(q2)

n/a

q2

B->K^*ll::H_T^4

\(H_T^4(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::H_T^4(q2)

n/a

q2

B->K^*ll::H_T^5

\(H_T^5(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::H_T^5(q2)

n/a

q2

B->K^*ll::H_long_corrections(q2)

n/a

q2

B->K^*ll::H_para_corrections(q2)

n/a

q2

B->K^*ll::H_perp_corrections(q2)

n/a

q2

B->K^*ll::Im{C9_para}(q2)

n/a

q2

B->K^*ll::Im{C9_perp}(q2)

n/a

q2

B->K^*ll::J_1c

\(J_{1c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_1c(q2)

\(J_{1c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_1s

\(J_{1s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_1s(q2)

\(J_{1s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_2c

\(J_{2c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_2c(q2)

\(J_{2c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_2s

\(J_{2s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_2s(q2)

\(J_{2s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_3

\(J_3(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_3(q2)

\(J_3(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_3norm

\(\bar{J}/\bar{\Gamma}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::J_3norm_CP_specific

\(J_3/\Gamma(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::J_4

\(J_4(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_4(q2)

\(J_4(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_5

\(J_5(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_5(q2)

\(J_5(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_6c

\(J_{6c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_6c(q2)

\(J_{6c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_6s

\(J_{6s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_6s(q2)

\(J_{6s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_7

\(J_7(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_7(q2)

\(J_7(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_8

\(J_8(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_8(q2)

\(J_8(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_9

\(J_9(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_min, q2_max

B->K^*ll::J_9(q2)

\(J_9(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::J_9norm

\(\bar{J}/\bar{\Gamma}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::J_9norm_CP_specific

\(J_9/\Gamma(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::N'_bin

\(\mathcal{N}'_\mathrm{bin}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::NormalizedBR

\(\mathcal{B}(\bar{B}\to \bar{K}^*\ell^+\ell^-)/\mathcal{B}(\bar{B}\to \bar{K}^*J/\psi)\)

q2_max, q2_min

B->K^*ll::P'_4

\(P'_4(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P'_4(q2)

\(P'_4(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q2)\)

q2

B->K^*ll::P'_4@LHCb

\(P'_4^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P'_5

\(P'_5(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P'_5(q2)

\(P'_5(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q2)\)

q2

B->K^*ll::P'_5@LHCb

\(P'_5^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P'_6

\(P'_6(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P'_6(q2)

\(P'_6(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q2)\)

q2

B->K^*ll::P'_6@LHCb

\(P'_6^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P'_8

\(P'_8(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P'_8@LHCb

\(P'_8^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P_1

\(P_1(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P_1@LHCb

\(P_1^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P_2

\(P_2(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P_2@LHCb

\(P_2^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P_3

\(P_3(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::P_3@LHCb

\(P_3^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::R_K^*

\(R_{K^*}\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B->K^*ll::R_K^*(q2)

\(R_{K^*}(q^2)\)

q2

B->K^*ll::Re{C9_para}(q2)

n/a

q2

B->K^*ll::Re{C9_perp}(q2)

n/a

q2

B->K^*ll::S_1c

\(S_{1c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_1c(q2)

\(S_{1c}^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_1c(q2)@LHCb

\(S_{1c}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_1c@LHCb

\(S_{1c}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_1s

\(S_{1s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_1s(q2)

\(S_{1s}^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_1s(q2)@LHCb

\(S_{1s}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_1s@LHCb

\(S_{1s}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_2c

\(S_{2c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_2c(q2)

\(S_{2c}^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_2c(q2)@LHCb

\(S_{2c}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_2c@LHCb

\(S_{2c}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_2s

\(S_{2s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_2s(q2)

\(S_{2s}^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_2s(q2)@LHCb

\(S_{2s}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_2s@LHCb

\(S_{2s}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_3

\(S_3(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_3(q2)

\(S_3^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_3(q2)@LHCb

\(S_3^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_3@LHCb

\(S_3^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_4

\(S_4(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_4(q2)

\(S_4^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_4(q2)@LHCb

\(S_4^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_4@LHCb

\(S_4^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_5

\(S_5(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_5(q2)

\(S_5^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_5(q2)@LHCb

\(S_5^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_5@LHCb

\(S_5^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_6c

\(S_{6c}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_6c(q2)

\(S_{6c}^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_6c(q2)@LHCb

\(S_{6c}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_6c@LHCb

\(S_{6c}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_6s

\(S_{6s}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_6s(q2)

\(S_{6s}^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_6s(q2)@LHCb

\(S_{6s}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_6s@LHCb

\(S_{6s}^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_7

\(S_7(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_7(q2)

\(S_7^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_7(q2)@LHCb

\(S_7^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_7@LHCb

\(S_7^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_8

\(S_8(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_8(q2)

\(S_8^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_8(q2)@LHCb

\(S_8^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_8@LHCb

\(S_8^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_9

\(S_9(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::S_9(q2)

\(S_9^{\bar{B}\to \bar{K}^*\ell^+\ell^-}(q^2)\)

q2

B->K^*ll::S_9(q2)@LHCb

\(S_9^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)(q^2)\)

q2

B->K^*ll::S_9@LHCb

\(S_9^\mathrm{LHCb}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B->K^*ll::dBR/ds

\(d\mathcal{B}/dq^2(\bar{B}\to \bar{K}^*\ell^+\ell^-)\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B->K^*ll::d^4Gamma

n/a

q2, cos(theta_l), cos(theta_k), phi

B->K^*ll::s_0^A_FB

n/a

B_s->phill::A_1c

\(A_{1c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_1s

\(A_{1s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_2c

\(A_{2c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_2s

\(A_{2s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_3

\(A_3(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_4

\(A_4(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_5

\(A_5(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_6c

\(A_{6c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_6s

\(A_{6s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_7

\(A_7(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_8

\(A_8(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_9

\(A_9(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::A_FB

\(A_\mathrm{FB}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::A_FB(q2)

\(A_\mathrm{FB}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::A_FB(q2)@LHCb

\(A_\mathrm{FB}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::A_FB@LHCb

\(A_\mathrm{FB}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::BR

\(\bar{\mathcal{B}}(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::BR_CP_specific

\(\mathcal{B}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::F_L

\(F_L(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::F_L(q2)

\(F_L(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::Gamma

\(\Gamma(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::Gamma(q2)

\(\Gamma(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::Gamma_CP_specific

n/a

q2_min, q2_max

B_s->phill::Gamma_CP_specific(q2)

n/a

q2

B_s->phill::H_1c

\(H_{1c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::H_1s

\(H_{1s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::H_2c

\(H_{2c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::H_2s

\(H_{2s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::Im{C9_para}(q2)

n/a

q2

B_s->phill::Im{C9_perp}(q2)

n/a

q2

B_s->phill::J_1c

\(J_{1c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_1c(q2)

\(J_{1c}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_1s

\(J_{1s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_1s(q2)

\(J_{1s}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_2c

\(J_{2c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_2c(q2)

\(J_{2c}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_2s

\(J_{2s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_2s(q2)

\(J_{2s}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_3

\(J_3(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_3(q2)

\(J_3(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_4

\(J_4(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_4(q2)

\(J_4(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_5

\(J_5(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_5(q2)

\(J_5(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_6c

\(J_{6c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_6c(q2)

\(J_{6c}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_6s

\(J_{6s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_6s(q2)

\(J_{6s}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_7

\(J_7(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_7(q2)

\(J_7(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_8

\(J_8(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_8(q2)

\(J_8(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::J_9

\(J_9(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_min, q2_max

B_s->phill::J_9(q2)

\(J_9(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::NormalizedBR

\(\mathcal{B}(\bar{B}_s\to \phi\ell^+\ell^-)/\mathcal{B}(\bar{B}_s\to\phi J/\psi)\)

q2_max, q2_min

B_s->phill::NormalizedexpBR

\(\langle\mathcal{B}\rangle(B_s->\phi\ell\ell)/\mathcal{B}(B_s->\phi J/\psi)\)

q2_max, q2_min

B_s->phill::R_phi

\(R_\phi\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

B_s->phill::R_phi(q2)

\(R_{\phi}(q^2)\)

q2

B_s->phill::Re{C9_para}(q2)

n/a

q2

B_s->phill::Re{C9_perp}(q2)

n/a

q2

B_s->phill::S_1c

\(S_{1c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_1c(q2)

\(S_{1c}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_1c(q2)@LHCb

\(S_{1c}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_1c@LHCb

\(S_{1c}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_1s

\(S_{1s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_1s(q2)

\(S_{1s}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_1s(q2)@LHCb

\(S_{1s}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_1s@LHCb

\(S_{1s}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_2c

\(S_{2c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_2c(q2)

\(S_{2c}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_2c(q2)@LHCb

\(S_{2c}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_2c@LHCb

\(S_{2c}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_2s

\(S_{2s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_2s(q2)

\(S_{2s}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_2s(q2)@LHCb

\(S_{2s}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_2s@LHCb

\(S_{2s}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_3

\(S_3(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_3(q2)

\(S_3(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_3(q2)@LHCb

\(S_3^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_3@LHCb

\(S_3^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_4

\(S_4(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_4(q2)

\(S_4(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_4(q2)@LHCb

\(S_4^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_4@LHCb

\(S_4^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_5

\(S_5(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_5(q2)

\(S_5(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_5(q2)@LHCb

\(S_5^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_5@LHCb

\(S_5^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_6c

\(S_{6c}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_6c(q2)

\(S_{6c}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_6c(q2)@LHCb

\(S_{6c}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_6c@LHCb

\(S_{6c}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_6s

\(S_{6s}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_6s(q2)

\(S_{6s}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_6s(q2)@LHCb

\(S_{6s}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_6s@LHCb

\(S_{6s}^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_7

\(S_7(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_7(q2)

\(S_7(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_7(q2)@LHCb

\(S_7^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_7@LHCb

\(S_7^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_8

\(S_8(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_8(q2)

\(S_8(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_8(q2)@LHCb

\(S_8^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_8@LHCb

\(S_8^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_9

\(S_9(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::S_9(q2)

\(S_9(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_9(q2)@LHCb

\(S_9^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)(q^2)\)

q2

B_s->phill::S_9@LHCb

\(S_9^\mathrm{LHCb}(\bar{B}_s\to \phi\ell^+\ell^-)\)

q2_max, q2_min

B_s->phill::dBR/ds

\(d\mathcal{B}/dq^2(\bar{B}_s\to \phi\ell^+\ell^-)\, \left[ \textrm{GeV}^{-2} \right]\)

q2

B_s->phill::d^4Gamma

n/a

q2, cos(theta_l), cos(theta_k), phi

B_s->phill::expBR

\(\langle\mathcal{B}\rangle(\bar{B}\to \bar{K}^*\ell^+\ell^-)\)

q2_max, q2_min

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor.

Observables in \(\Lambda_b \to \Lambda\ell^+\ell^-\) decays

Qualified Name

Description

Kinematic Variables

Lambda_b->Lambdall::A_FB^c(q2)@LargeRecoil

n/a

q2

Lambda_b->Lambdall::A_FB^c(q2)@LowRecoil

n/a

q2

Lambda_b->Lambdall::A_FB^c@LargeRecoil

\(A_\mathrm{FB}^{h,\ell}(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::A_FB^c@LowRecoil

\(A_\mathrm{FB}^{h,\ell}(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::A_FB^h(q2)@LargeRecoil

n/a

q2

Lambda_b->Lambdall::A_FB^h(q2)@LowRecoil

n/a

q2

Lambda_b->Lambdall::A_FB^h@LargeRecoil

\(A_\mathrm{FB}^h(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::A_FB^h@LowRecoil

\(A_\mathrm{FB}^h(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::A_FB^l(q2)@LargeRecoil

n/a

q2

Lambda_b->Lambdall::A_FB^l(q2)@LowRecoil

n/a

q2

Lambda_b->Lambdall::A_FB^l@LargeRecoil

\(A_\mathrm{FB}^\ell(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::A_FB^l@LowRecoil

\(A_\mathrm{FB}^\ell(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::BR@LargeRecoil

\(\mathcal{B}(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::BR@LowRecoil

\(\mathcal{B}(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::F_0(q2)@LargeRecoil

n/a

q2

Lambda_b->Lambdall::F_0(q2)@LowRecoil

n/a

q2

Lambda_b->Lambdall::F_0@LargeRecoil

\(F_0(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::F_0@LowRecoil

\(F_0(\Lambda_b\to\Lambda\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambdall::K_1c@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_1cc@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_1ss@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_2c@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_2cc@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_2ss@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_3s@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_3sc@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_4s@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::K_4sc@LowRecoil

n/a

q2_min, q2_max

Lambda_b->Lambdall::M_10@LowRecoil

\(M_{10}\)

q2_min, q2_max

Lambda_b->Lambdall::M_11@LowRecoil

\(M_{11}\)

q2_min, q2_max

Lambda_b->Lambdall::M_12@LowRecoil

\(M_{12}\)

q2_min, q2_max

Lambda_b->Lambdall::M_13@LowRecoil

\(M_{13}\)

q2_min, q2_max

Lambda_b->Lambdall::M_14@LowRecoil

\(M_{14}\)

q2_min, q2_max

Lambda_b->Lambdall::M_15@LowRecoil

\(M_{15}\)

q2_min, q2_max

Lambda_b->Lambdall::M_16@LowRecoil

\(M_{16}\)

q2_min, q2_max

Lambda_b->Lambdall::M_17@LowRecoil

\(M_{17}\)

q2_min, q2_max

Lambda_b->Lambdall::M_18@LowRecoil

\(M_{18}\)

q2_min, q2_max

Lambda_b->Lambdall::M_19@LowRecoil

\(M_{19}\)

q2_min, q2_max

Lambda_b->Lambdall::M_1@LowRecoil

\(M_1\)

q2_min, q2_max

Lambda_b->Lambdall::M_20@LowRecoil

\(M_{20}\)

q2_min, q2_max

Lambda_b->Lambdall::M_21@LowRecoil

\(M_{21}\)

q2_min, q2_max

Lambda_b->Lambdall::M_22@LowRecoil

\(M_{22}\)

q2_min, q2_max

Lambda_b->Lambdall::M_23@LowRecoil

\(M_{23}\)

q2_min, q2_max

Lambda_b->Lambdall::M_24@LowRecoil

\(M_{24}\)

q2_min, q2_max

Lambda_b->Lambdall::M_25@LowRecoil

\(M_{25}\)

q2_min, q2_max

Lambda_b->Lambdall::M_26@LowRecoil

\(M_{26}\)

q2_min, q2_max

Lambda_b->Lambdall::M_27@LowRecoil

\(M_{27}\)

q2_min, q2_max

Lambda_b->Lambdall::M_28@LowRecoil

\(M_{28}\)

q2_min, q2_max

Lambda_b->Lambdall::M_29@LowRecoil

\(M_{29}\)

q2_min, q2_max

Lambda_b->Lambdall::M_2@LowRecoil

\(M_2\)

q2_min, q2_max

Lambda_b->Lambdall::M_30@LowRecoil

\(M_{30}\)

q2_min, q2_max

Lambda_b->Lambdall::M_31@LowRecoil

\(M_{31}\)

q2_min, q2_max

Lambda_b->Lambdall::M_32@LowRecoil

\(M_{32}\)

q2_min, q2_max

Lambda_b->Lambdall::M_33@LowRecoil

\(M_{33}\)

q2_min, q2_max

Lambda_b->Lambdall::M_34@LowRecoil

\(M_{34}\)

q2_min, q2_max

Lambda_b->Lambdall::M_3@LowRecoil

\(M_3\)

q2_min, q2_max

Lambda_b->Lambdall::M_4@LowRecoil

\(M_4\)

q2_min, q2_max

Lambda_b->Lambdall::M_5@LowRecoil

\(M_5\)

q2_min, q2_max

Lambda_b->Lambdall::M_6@LowRecoil

\(M_6\)

q2_min, q2_max

Lambda_b->Lambdall::M_7@LowRecoil

\(M_7\)

q2_min, q2_max

Lambda_b->Lambdall::M_8@LowRecoil

\(M_8\)

q2_min, q2_max

Lambda_b->Lambdall::M_9@LowRecoil

\(M_9\)

q2_min, q2_max

Lambda_b->Lambdall::R_Lambda@LargeRecoil

\(R_{\Lambda}\)

q2_e_max, q2_e_min, q2_mu_max, q2_mu_min

Lambda_b->Lambdall::dBR/dq2@LargeRecoil

\(d\mathcal{B}(\Lambda_b\to\Lambda\ell^+\ell^-)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

Lambda_b->Lambdall::dBR/dq2@LowRecoil

\(d\mathcal{B}(\Lambda_b\to\Lambda\ell^+\ell^-)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

The option “l” selects the charged lepton flavor.

Observables in \(\Lambda_b \to \Lambda(1520))\ell^+\ell^-\) decays

Qualified Name

Description

Kinematic Variables

Lambda_b->Lambda(1520)ll::A_FB^l

\(A_\mathrm{FB}^\ell(\bar{\Lambda}_b\to\bar{\Lambda}(1520)\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambda(1520)ll::A_FB^l(q2)

n/a

q2

Lambda_b->Lambda(1520)ll::BR

\(\mathcal{B}(\bar{\Lambda}_b\to\bar{\Lambda}(1520)\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambda(1520)ll::Gamma

\(\Gamma(\bar{\Lambda}_b\to\bar{\Lambda}(1520)\ell^+\ell^-)\)

q2_max, q2_min

Lambda_b->Lambda(1520)ll::Gamma(q2)

\(\Gamma(\bar{\Lambda}_b\to\bar{\Lambda}(1520)\ell^+\ell^-)(q^2)\)

q2

Lambda_b->Lambda(1520)ll::Gamma_CP_specific

n/a

q2_min, q2_max

Lambda_b->Lambda(1520)ll::Gamma_CP_specific(q2)

n/a

q2

Lambda_b->Lambda(1520)ll::L_1cc

\(L_{1cc}(\bar{\Lambda}_b\to\bar{\Lambda}(1520)\ell^+\ell^-)\)

q2_min, q2_max

Lambda_b->Lambda(1520)ll::L_1cc(q2)

\(L_{1cc}(\bar{\Lambda}_b\to\bar{\Lambda}(1520)\ell^+\ell^-)(q^2)\)

q2

Lambda_b->Lambda(1520)ll::S_1cc

\(S_{1cc}(\Lambda_b\to\Lambda(1520)\ell^+\ell^-)\)

q2_max, q2_min

Lambda_b->Lambda(1520)ll::S_1cc(q2)

\(S_{1cc}(\Lambda_b\to\Lambda(1520)\ell^+\ell^-)(q^2)\)

q2

Lambda_b->Lambda(1520)ll::dBR/dq2

\(d\mathcal{B}(\bar{\Lambda}_b\to\bar{\Lambda}(1520)\ell^+\ell^-)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

The option “l” selects the charged lepton flavor.

Observables in \(\Lambda_b \to \Lambda(1520)) \gamma\) decays

Qualified Name

Description

Kinematic Variables

Lambda_b->Lambda(1520)gamma::BR

\(\mathcal{B}(\Lambda_b\to\Lambda(1520)\gamma)\)

Observables in \(B \to X_s \lbrace \gamma, \ell^+\ell^-\rbrace\) decays

Qualified Name

Description

Kinematic Variables

B->X_sgamma::BR(E_min)@NLO

n/a

E_min

B->X_sgamma::BR@Minimal

n/a

B->X_sgamma::E_1(E_min)@NLO

n/a

E_min

B->X_sgamma::E_2(E_min)@NLO

n/a

E_min

B->X_sll::BR@HLMW2005

n/a

q2_min, q2_max

B->X_sll::dBR/dq2@HLMW2005

n/a

q2

The option “l” selects the charged lepton flavor. The option “q” selects the spectator quark flavor.

Observables in \(B\to K \nu\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B->Knunu::BR

\(\mathcal{B}(\bar{B}\to \bar{K}\nu\bar\nu)\)

q2_min, q2_max

B->Knunu::dBR/dq2

\(d\mathcal{B}(\bar{B}\to \bar{K}\nu\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

Observables in \(B\to K^* \nu\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B->K^*nunu::BR

\(\mathcal{B}(\bar{B}\to \bar{K}^*\nu\bar\nu)\)

q2_min, q2_max

B->K^*nunu::F_L

\(F_L(\bar{B}\to \bar{K}^*\nu\bar\nu)\)

q2_min, q2_max

B->K^*nunu::F_L(q2)

\(F_L(\bar{B}\to \bar{K}^*\nu\bar\nu)(q^2)\)

q2

B->K^*nunu::dBR/dq2

\(d\mathcal{B}(\bar{B}\to \bar{K}^*\nu\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

Observables in \(B_s\to\phi\nu\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

B_s->phinunu::BR

\(\mathcal{B}(\bar{B}_s\to\phi\nu\bar\nu)\)

q2_min, q2_max

B_s->phinunu::F_L

\(F_L(\bar{B}_s\to\phi\nu\bar\nu)\)

q2_min, q2_max

B_s->phinunu::F_L(q2)

\(F_L(\bar{B}_s\to\phi\nu\bar\nu)(q^2)\)

q2

B_s->phinunu::dBR/dq2

\(d\mathcal{B}(\bar{B}_s\to\phi\nu\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

Observables in \(\Lambda_b\to\Lambda\nu\bar\nu\) decays

Qualified Name

Description

Kinematic Variables

Lambda_b->Lambdanunu::BR

\(\mathcal{B}(\bar{\Lambda}_b\to\Lambda\nu\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambdanunu::F_L

\(F_L(\bar{\Lambda}_b\to\Lambda\nu\bar\nu)\)

q2_min, q2_max

Lambda_b->Lambdanunu::F_L(q^2)

\(F_L(\bar{\Lambda}_b\to\Lambda\nu\bar\nu)(q^2)\, \left[ \textrm{GeV}^{-2} \right]\)

q2

Lambda_b->Lambdanunu::dBR/dq2

\(d\mathcal{B}(\bar{\Lambda}_b\to\Lambda\nu\bar\nu)/dq^2\, \left[ \textrm{GeV}^{-2} \right]\)

q2

Observables in neutral meson mixing

Observables in \(B_s\)\(\bar{B}_s\) mixing

Qualified Name

Description

Kinematic Variables

B_s<->Bbar_s::DeltaM

\(\Delta M_s(B_s\leftrightarrow \bar{B}_s)\, \left[ \textrm{ps}^{-1} \right]\)

Pseudo-observables for the non-local form factors

Observables in \(B_q \to P\) decays

Qualified Name

Description

Kinematic Variables

B->K::Abs{H_plus}(q2)

\(|\mathcal{H}_0^{B \to K}(q^2)|\)

q2

B->K::Abs{Hhat_plus}(q2)

\(|\hat{\mathcal{H}}_0^{B \to K}(q^2)|\)

q2

B->K::Abs{P_ratio_plus}(q2)

n/a

q2

B->K::Abs{ratio_plus}(q2)

n/a

q2

B->K::Im{F_ratio_plus}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K::Im{H_plus}(q2)

\(\mathrm{Im}\mathcal{H}_0^{B \to K}(q^2)\)

q2

B->K::Im{Hhat_plus}(q2)

\(\mathrm{Im}\hat{\mathcal{H}}_0^{B \to K}(q^2)\)

q2

B->K::Im{alpha}

n/a

k

B->K::Im{ratio_plus}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K::Im{ratio_plus}(q2)

n/a

q2

B->K::Re{F_ratio_plus}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K::Re{H_plus}(q2)

\(\mathrm{Re}\mathcal{H}_0^{B \to K}(q^2)\)

q2

B->K::Re{Hhat_plus}(q2)

\(\mathrm{Re}\hat{\mathcal{H}}_0^{B \to K}(q^2)\)

q2

B->K::Re{alpha}

n/a

k

B->K::Re{ratio_plus}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K::Re{ratio_plus}(q2)

n/a

q2

B->K::strong_bound

n/a

B->K::strong_bound_log_likelihood

n/a

B->K::weak_bound

n/a

B->K::weak_bound_log_likelihood

n/a

The option “q” selects the spectator quark flavor.

Observables in \(B_q \to V\) decays

Qualified Name

Description

Kinematic Variables

B->K^*::Abs{H_long}(q2)

\(|\mathcal{H}_0^{B \to K^*}(q^2)|\)

q2

B->K^*::Abs{H_para}(q2)

\(|\mathcal{H}_\parallel^{B \to K^*}(q^2)|\)

q2

B->K^*::Abs{H_perp}(q2)

\(|\mathcal{H}_\perp^{B \to K^*}(q^2)|\)

q2

B->K^*::Abs{Hhat_long}(q2)

\(|\hat{\mathcal{H}}_0^{B \to K^*}(q^2)|\)

q2

B->K^*::Abs{Hhat_para}(q2)

\(|\hat{\mathcal{H}}_\parallel^{B \to K^*}(q^2)|\)

q2

B->K^*::Abs{Hhat_perp}(q2)

\(|\hat{\mathcal{H}}_\perp^{B \to K^*}(q^2)|\)

q2

B->K^*::Abs{ratio_long}(q2)

n/a

q2

B->K^*::Abs{ratio_para}(q2)

n/a

q2

B->K^*::Abs{ratio_perp}(q2)

n/a

q2

B->K^*::Im{F_ratio_long}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Im{F_ratio_para}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Im{F_ratio_perp}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Im{H_long}(q2)

\(\mathrm{Im}\mathcal{H}_0^{B \to K^*}(q^2)\)

q2

B->K^*::Im{H_para}(q2)

\(\mathrm{Im}\mathcal{H}_\parallel^{B \to K^*}(q^2)\)

q2

B->K^*::Im{H_perp}(q2)

\(\mathrm{Im}\mathcal{H}_\perp^{B \to K^*}(q^2)\)

q2

B->K^*::Im{Hhat_long}(q2)

\(\mathrm{Im}\hat{\mathcal{H}}_0^{B \to K^*}(q^2)\)

q2

B->K^*::Im{Hhat_para}(q2)

\(\mathrm{Im}\hat{\mathcal{H}}_\parallel^{B \to K^*}(q^2)\)

q2

B->K^*::Im{Hhat_perp}(q2)

\(\mathrm{Im}\hat{\mathcal{H}}_\perp^{B \to K^*}(q^2)\)

q2

B->K^*::Im{long_alpha}

n/a

k

B->K^*::Im{para_alpha}

n/a

k

B->K^*::Im{perp_alpha}

n/a

k

B->K^*::Im{ratio_long}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Im{ratio_long}(q2)

n/a

q2

B->K^*::Im{ratio_para}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Im{ratio_para}(q2)

n/a

q2

B->K^*::Im{ratio_perp}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Im{ratio_perp}(q2)

n/a

q2

B->K^*::Re{F_ratio_long}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Re{F_ratio_para}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Re{F_ratio_perp}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Re{H_long}(q2)

\(\mathrm{Re}\mathcal{H}_0^{B \to K^*}(q^2)\)

q2

B->K^*::Re{H_para}(q2)

\(\mathrm{Re}\mathcal{H}_\parallel^{B \to K^*}(q^2)\)

q2

B->K^*::Re{H_perp}(q2)

\(\mathrm{Re}\mathcal{H}_\perp^{B \to K^*}(q^2)\)

q2

B->K^*::Re{Hhat_long}(q2)

\(\mathrm{Re}\hat{\mathcal{H}}_0^{B \to K^*}(q^2)\)

q2

B->K^*::Re{Hhat_para}(q2)

\(\mathrm{Re}\hat{\mathcal{H}}_\parallel^{B \to K^*}(q^2)\)

q2

B->K^*::Re{Hhat_perp}(q2)

\(\mathrm{Re}\hat{\mathcal{H}}_\perp^{B \to K^*}(q^2)\)

q2

B->K^*::Re{long_alpha}

n/a

k

B->K^*::Re{para_alpha}

n/a

k

B->K^*::Re{perp_alpha}

n/a

k

B->K^*::Re{ratio_long}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Re{ratio_long}(q2)

n/a

q2

B->K^*::Re{ratio_para}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Re{ratio_para}(q2)

n/a

q2

B->K^*::Re{ratio_perp}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B->K^*::Re{ratio_perp}(q2)

n/a

q2

B->K^*::strong_bound

n/a

B->K^*::strong_bound_log_likelihood

n/a

B->K^*::weak_bound

n/a

B->K^*::weak_bound_log_likelihood

n/a

B_s->phi::Abs{H_long}(q2)

\(|\mathcal{H}_0^{B_s \to \phi}(q^2)|\)

q2

B_s->phi::Abs{H_para}(q2)

\(|\mathcal{H}_\parallel^{B_s \to \phi}(q^2)|\)

q2

B_s->phi::Abs{H_perp}(q2)

\(|\mathcal{H}_\perp^{B_s \to \phi}(q^2)|\)

q2

B_s->phi::Abs{Hhat_long}(q2)

\(|\hat{\mathcal{H}}_0^{B_s \to \phi}(q^2)|\)

q2

B_s->phi::Abs{Hhat_para}(q2)

\(|\hat{\mathcal{H}}_\parallel^{B_s \to \phi}(q^2)|\)

q2

B_s->phi::Abs{Hhat_perp}(q2)

\(|\hat{\mathcal{H}}_\perp^{B_s \to \phi}(q^2)|\)

q2

B_s->phi::Abs{ratio_long}(q2)

n/a

q2

B_s->phi::Abs{ratio_para}(q2)

n/a

q2

B_s->phi::Abs{ratio_perp}(q2)

n/a

q2

B_s->phi::Im{H_long}(q2)

\(\mathrm{Im}\mathcal{H}_0^{B_s \to \phi}(q^2)\)

q2

B_s->phi::Im{H_para}(q2)

\(\mathrm{Im}\mathcal{H}_\parallel^{B_s \to \phi}(q^2)\)

q2

B_s->phi::Im{H_perp}(q2)

\(\mathrm{Im}\mathcal{H}_\perp^{B_s \to \phi}(q^2)\)

q2

B_s->phi::Im{long_alpha}

n/a

k

B_s->phi::Im{para_alpha}

n/a

k

B_s->phi::Im{perp_alpha}

n/a

k

B_s->phi::Im{ratio_long}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B_s->phi::Im{ratio_long}(q2)

n/a

q2

B_s->phi::Im{ratio_para}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B_s->phi::Im{ratio_para}(q2)

n/a

q2

B_s->phi::Im{ratio_perp}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B_s->phi::Im{ratio_perp}(q2)

n/a

q2

B_s->phi::Re{H_long}(q2)

\(\mathrm{Re}\mathcal{H}_0^{B_s \to \phi}(q^2)\)

q2

B_s->phi::Re{H_para}(q2)

\(\mathrm{Re}\mathcal{H}_\parallel^{B_s \to \phi}(q^2)\)

q2

B_s->phi::Re{H_perp}(q2)

\(\mathrm{Re}\mathcal{H}_\perp^{B_s \to \phi}(q^2)\)

q2

B_s->phi::Re{long_alpha}

n/a

k

B_s->phi::Re{para_alpha}

n/a

k

B_s->phi::Re{perp_alpha}

n/a

k

B_s->phi::Re{ratio_long}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B_s->phi::Re{ratio_long}(q2)

n/a

q2

B_s->phi::Re{ratio_para}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B_s->phi::Re{ratio_para}(q2)

n/a

q2

B_s->phi::Re{ratio_perp}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

B_s->phi::Re{ratio_perp}(q2)

n/a

q2

B_s->phi::strong_bound

n/a

B_s->phi::strong_bound_log_likelihood

n/a

B_s->phi::weak_bound

n/a

B_s->phi::weak_bound_log_likelihood

n/a

The option “q” selects the spectator quark flavor.

Pseudo-observables for Non-local Matrix Elements

Qualified Name

Description

Kinematic Variables

B->K^*gamma^*::Re{H_1}[s^1/s^0](q2)

n/a

q2

B->K^*gamma^*::Re{H_23}[s^1/s^0](q2)

n/a

q2

B->K^*gamma^*::Re{H_2}[s^1/s^0](q2)

n/a

q2

B->K^*gamma^*::Re{H_long}(q2)

n/a

q2

B->K^*gamma^*::Re{H_para}(q2)

n/a

q2

B->K^*gamma^*::Re{H_perp}(q2)

n/a

q2

B->Kgamma^*::Re{H_+}(q2)

n/a

q2

B->Kgamma^*::Re{H_+}[s^1/s^0](q2)

n/a

q2

b->s::Im{F17}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

b->s::Im{F19}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

b->s::Im{F27}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

b->s::Im{F29}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

b->s::Re{F17}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

b->s::Re{F19}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

b->s::Re{F27}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

b->s::Re{F29}(Re{q2},Im{q2})

n/a

Re{q2}, Im{q2}

Form factors

Form factors for \(B\to \pi\) transitions

Qualified Name

Description

Kinematic Variables

B->pi::M_B(SVZ)@DKMMO2008

n/a

B->pi::M_B(f_+,LCSR)@DKMMO2008

n/a

q2

B->pi::M_B(f_0,LCSR)@DKMMO2008

n/a

q2

B->pi::M_B(f_T,LCSR)@DKMMO2008

n/a

q2

B->pi::f_+''(q2)

\(f_+^{'',B\to\pi}(q^2)\)

q2

B->pi::f_+'(q2)

\(f_+^{',B\to\pi}(q^2)\)

q2

B->pi::f_+(q2)

\(f_+^{B\to\pi}(q^2)\)

q2

B->pi::f_+[s^1/s^0](q2)

n/a

q2

B->pi::f_-(q2)

\(f_-^{B\to\pi}(q^2)\)

q2

B->pi::f_0(q2)

\(f_0^{B\to\pi}(q^2)\)

q2

B->pi::f_0(q2)/f_+(q2)

\(f_0(q^2)/f_+(q^2)\)

q2

B->pi::f_0[s^1/s^0](q2)

n/a

q2

B->pi::f_B@DKMMO2008

n/a

B->pi::f_T(q2)

\(f_T^{B\to\pi}(q^2)\)

q2

B->pi::f_T[s^1/s^0](q2)

n/a

q2

Pseudo observables representing the full basis of \(B\to \pi\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B\to K\) transitions

Qualified Name

Description

Kinematic Variables

B->K::F_T(q2)/F_plus(q2)

\(F_T(q^2)/F_+(q^2)\)

q2

B->K::F_plus(q2)

\(F_+^{B\to K}(q^2)\)

q2

B->K::F_plus_T(q2)

\(F_T^{B\to K}(q^2)\)

q2

B->K::F_plus_T(q2)/F_plus(q2)

\(F_{+,T}(q^2)/F_+(q^2)\)

q2

B->K::Saturation[0^+_V]

\(\textrm{Saturation}[0^+_V]\)

B->K::Saturation[0^-_A]

\(\textrm{Saturation}[0^-_A]\)

B->K::Saturation[1^+_A]

\(\textrm{Saturation}[1^+_A]\)

B->K::Saturation[1^+_T5]

\(\textrm{Saturation}[1^+_{T5}]\)

B->K::Saturation[1^-_T]

\(\textrm{Saturation}[1^-_T]\)

B->K::Saturation[1^-_V]

\(\textrm{Saturation}[1^-_V]\)

B->K::f_+(q2)

\(f_+^{B\to K}(q^2)\)

q2

B->K::f_+[s^1/s^0](q2)

n/a

q2

B->K::f_+_series(q2)@BFW2010

\(\hat{f}_+^{B\to K}(q^2)\)

q2

B->K::f_+_series_prime(q2)@BFW2010

\(\hat{f}_+^{\prime B\to K}(q^2)\)

q2

B->K::f_-(q2)

\(f_-^{B\to K}(q^2)\)

q2

B->K::f_0(q2)

\(f_0^{B\to K}(q^2)\)

q2

B->K::f_0[s^1/s^0](q2)

n/a

q2

B->K::f_0_series(q2)@BFW2010

\(\hat{f}_0^{B\to K}(q^2)\)

q2

B->K::f_0_series_prime(q2)@BFW2010

\(\hat{f}_0^{\prime B\to K}(q^2)\)

q2

B->K::f_T(q2)

\(f_T^{B\to K}(q^2)\)

q2

B->K::f_T[s^1/s^0](q2)

n/a

q2

B->K::f_T_series(q2)@BFW2010

\(\hat{f}_T^{B\to K}(q^2)\)

q2

B->K::f_T_series_prime(q2)@BFW2010

\(\hat{f}_T^{\prime B\to K}(q^2)\)

q2

Pseudo observables representing the full basis of \(B\to K\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B_s\to \bar{K}\) transitions

Qualified Name

Description

Kinematic Variables

B_s->K::M_B(SVZ)@DKMMO2008

n/a

B_s->K::M_B(f_+,LCSR)@DKMMO2008

n/a

q2

B_s->K::M_B(f_0,LCSR)@DKMMO2008

n/a

q2

B_s->K::M_B(f_T,LCSR)@DKMMO2008

n/a

q2

B_s->K::Saturation[0^+_V]

\(\textrm{Saturation}[0^+_V]\)

B_s->K::Saturation[1^+_A]

\(\textrm{Saturation}[1^+_A]\)

B_s->K::Saturation[1^+_T5]

\(\textrm{Saturation}[1^+_{T5}]\)

B_s->K::Saturation[1^-_T]

\(\textrm{Saturation}[1^-_T]\)

B_s->K::Saturation[1^-_V]

\(\textrm{Saturation}[1^-_V]\)

B_s->K::f_+(q2)

\(f_+^{B_s\to \bar{K}}(q^2)\)

q2

B_s->K::f_+[s^1/s^0](q2)

n/a

q2

B_s->K::f_-(q2)

\(f_-^{B_s\to \bar{K}}(q^2)\)

q2

B_s->K::f_0(q2)

\(f_0^{B_s\to \bar{K}}(q^2)\)

q2

B_s->K::f_0[s^1/s^0](q2)

n/a

q2

B_s->K::f_B@DKMMO2008

n/a

B_s->K::f_T(q2)

\(f_T^{B_s\to \bar{K}}(q^2)\)

q2

B_s->K::f_T[s^1/s^0](q2)

n/a

q2

Pseudo observables representing the full basis of \(B_s\to \bar{K}\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B_s\to \bar{D_s}\) transitions

Qualified Name

Description

Kinematic Variables

B(_s)->D(_s)::f_0(q2_num)/f_0(q2_denom)

\(f_0(q^2_\mathrm{num})/f_+(q^2_\mathrm{denom})\)

q2_denom, q2_num

B_s->D_s::a_0[S_1]@HQE

\(a_0^{S_1}\)

B_s->D_s::a_0[V_1]@HQE

\(a_0^{V_1}\)

B_s->D_s::a_0[f_T]@HQE

\(a_0^{f_T}\)

B_s->D_s::a_1/a_0[S_1]@HQE

\(a_1^{S_1}/a_0^{S_1}\)

B_s->D_s::a_1/a_0[V_1]@HQE

\(a_1^{V_1}/a_0^{V_1}\)

B_s->D_s::a_1/a_0[f_T]@HQE

\(a_1^{f_T}/a_0^{f_T}\)

B_s->D_s::a_1[S_1]@HQE

\(a_1^{S_1}\)

B_s->D_s::a_1[V_1]@HQE

\(a_1^{V_1}\)

B_s->D_s::a_1[f_T]@HQE

\(a_1^{f_T}\)

B_s->D_s::a_2/a_0[S_1]@HQE

\(a_2^{S_1}/a_0^{S_1}\)

B_s->D_s::a_2/a_0[V_1]@HQE

\(a_2^{V_1}/a_0^{V_1}\)

B_s->D_s::a_2/a_0[f_T]@HQE

\(a_2^{f_T}/a_0^{f_T}\)

B_s->D_s::a_2[S_1]@HQE

\(a_2^{S_1}\)

B_s->D_s::a_2[V_1]@HQE

\(a_2^{V_1}\)

B_s->D_s::a_2[f_T]@HQE

\(a_2^{f_T}\)

B_s->D_s::f_+(q2)

\(f_+^{B_s\to \bar{D}_s}(q^2)\)

q2

B_s->D_s::f_+[s^1/s^0](q2)

n/a

q2

B_s->D_s::f_-(q2)

\(f_-^{B_s\to \bar{D}_s}(q^2)\)

q2

B_s->D_s::f_0(q2)

\(f_0^{B_s\to \bar{D}_s}(q^2)\)

q2

B_s->D_s::f_0[s^1/s^0](q2)

n/a

q2

B_s->D_s::f_T(q2)

\(f_T^{B_s\to \bar{D}_s}(q^2)\)

q2

B_s->D_s::f_T(q2)/f_+(q2)

\(f_T(q^2)/f_+(q^2)\)

q2

B_s->D_s::f_T[s^1/s^0](q2)

n/a

q2

Pseudo observables representing the full basis of \(B_s\to\bar{D}_s\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B \to \gamma^*\) transitions

Qualified Name

Description

Kinematic Variables

B->gamma^*::Abs{F_1}(q2,k2)

\(\text{Abs}\,F_1^{B\to \gamma^*}(q^2,k^2)\)

q2, k2

B->gamma^*::Abs{F_2}(q2,k2)

\(\text{Abs}\,F_2^{B\to \gamma^*}(q^2,k^2)\)

q2, k2

B->gamma^*::Abs{F_3}(q2,k2)

\(\text{Abs}\,F_3^{B\to \gamma^*}(q^2,k^2)\)

q2, k2

B->gamma^*::Abs{F_4}(q2,k2)

\(\text{Abs}\,F_4^{B\to \gamma^*}(q^2,k^2)\)

q2, k2

B->gamma^*::Arg{F_1}(q2,k2)

\(\text{Arg}\,F_1^{B\to \gamma^*}(q^2,k^2)\)

q2, k2

B->gamma^*::Arg{F_2}(q2,k2)

\(\text{Arg}\,F_2^{B\to \gamma^*}(q^2,k^2)\)

q2, k2

B->gamma^*::Arg{F_3}(q2,k2)

\(\text{Arg}\,F_3^{B\to \gamma^*}(q^2,k^2)\)

q2, k2

B->gamma^*::Arg{F_4}(q2,k2)

\(\text{Arg}\,F_4^{B\to \gamma^*}(q^2,k^2)\)

q2, k2

Pseudo observables representing the \(B \to \gamma^*\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B\to \gamma\) transitions

Qualified Name

Description

Kinematic Variables

B->gamma::F_A(E_gamma)

\(F_A^{B\to \gamma}(E_\gamma)\)

E_gamma

B->gamma::F_V(E_gamma)

\(F_V^{B\to \gamma}(E_\gamma)\)

E_gamma

Pseudo observables representing the full basis of \(B\to \gamma\) form factors.

Form factors for \(B\to \omega\) transitions

Qualified Name

Description

Kinematic Variables

B->omega::A_0(q2)

\(A_0^{B\to \omega}(q^2)\)

q2

B->omega::A_1(q2)

\(A_1^{B\to \omega}(q^2)\)

q2

B->omega::A_12(q2)

\(A_{12}^{B\to \omega}(q^2)\)

q2

B->omega::A_2(q2)

\(A_2^{B\to \omega}(q^2)\)

q2

B->omega::T_1(q2)

\(T_1^{B\to \omega}(q^2)\)

q2

B->omega::T_2(q2)

\(T_2^{B\to \omega}(q^2)\)

q2

B->omega::T_23(q2)

\(T_{23}^{B\to \omega}(q^2)\)

q2

B->omega::T_3(q2)

\(T_3^{B\to \omega}(q^2)\)

q2

B->omega::V(q2)

\(V^{B\to \omega}(q^2)\)

q2

Pseudo observables representing the full basis of \(B\to \omega\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B\to \rho\) transitions

Qualified Name

Description

Kinematic Variables

B->rho::A_0(q2)

\(A_0^{B\to \rho}(q^2)\)

q2

B->rho::A_1(q2)

\(A_1^{B\to \rho}(q^2)\)

q2

B->rho::A_12(q2)

\(A_{12}^{B\to \rho}(q^2)\)

q2

B->rho::A_12(q2)/A_1(q2)

\(A_{12}(q^2)/A_1(q^2)\)

q2

B->rho::A_1[s^1/s^0](q2)

n/a

q2

B->rho::A_2(q2)

\(A_2^{B\to \rho}(q^2)\)

q2

B->rho::A_2(q2)/A_1(q2)

\(A_2(q^2)/A_1(q^2)\)

q2

B->rho::A_2[s^1/s^0](q2)

n/a

q2

B->rho::A_30[s^1/s^0](q2)

n/a

q2

B->rho::T_1(q2)

\(T_1^{B\to \rho}(q^2)\)

q2

B->rho::T_1[s^1/s^0](q2)

n/a

q2

B->rho::T_2(q2)

\(T_2^{B\to \rho}(q^2)\)

q2

B->rho::T_23(q2)

\(T_{23}^{B\to \rho}(q^2)\)

q2

B->rho::T_23(q2)/T_2(q2)

\(T_{23}(q^2)/T_2(q^2)\)

q2

B->rho::T_23A[s^1/s^0](q2)

n/a

q2

B->rho::T_23B[s^1/s^0](q2)

n/a

q2

B->rho::T_3(q2)

\(T_3^{B\to \rho}(q^2)\)

q2

B->rho::V(q2)

\(V^{B\to \rho}(q^2)\)

q2

B->rho::V(q2)/A_1(q2)

\(V(q^2)/A_1(q^2)\)

q2

B->rho::V[s^1/s^0](q2)

n/a

q2

Pseudo observables representing the full basis of \(B\to \rho\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B\to K^*\) transitions

Qualified Name

Description

Kinematic Variables

B->K^*::A_0(q2)

\(A_0^{B\to K^*}(q^2)\)

q2

B->K^*::A_1(q2)

\(A_1^{B\to K^*}(q^2)\)

q2

B->K^*::A_12(q2)

\(A_{12}^{B\to K^*}(q^2)\)

q2

B->K^*::A_12(q2)/A_1(q2)

\(A_{12}(q^2)/A_1(q^2)\)

q2

B->K^*::A_1[s^1/s^0](q2)

n/a

q2

B->K^*::A_2(q2)

\(A_2^{B\to K^*}(q^2)\)

q2

B->K^*::A_2(q2)/A_1(q2)

\(A_2(q^2)/A_1(q^2)\)

q2

B->K^*::A_2[s^1/s^0](q2)

n/a

q2

B->K^*::A_30[s^1/s^0](q2)

n/a

q2

B->K^*::F_long(q2)

\(\mathcal{F}_0^{B\to K^*}(q^2)\)

q2

B->K^*::F_long_T(q2)

\(\mathcal{F}_{0,T}^{B\to K^*}(q^2)\)

q2

B->K^*::F_long_T(q2)/F_long(q2)

\(\mathcal{F}_{0,T}(q^2)/\mathcal{F}_0(q^2)\)

q2

B->K^*::F_para(q2)

\(\mathcal{F}_\parallel^{B\to K^*}(q^2)\)

q2

B->K^*::F_para_T(q2)

\(\mathcal{F}_{\parallel,T}^{B\to K^*}(q^2)\)

q2

B->K^*::F_para_T(q2)/F_para(q2)

\(\mathcal{F}_{\parallel,T}(q^2)/\mathcal{F}_\parallel(q^2)\)

q2

B->K^*::F_perp(q2)

\(\mathcal{F}_\perp^{B\to K^*}(q^2)\)

q2

B->K^*::F_perp_T(q2)

\(\mathcal{F}_{\perp,T}^{B\to K^*}(q^2)\)

q2

B->K^*::F_perp_T(q2)/F_perp(q2)

\(\mathcal{F}_{\perp,T}(q^2)/\mathcal{F}_\perp(q^2)\)

q2

B->K^*::Saturation[0^+_V]

\(\textrm{Saturation}[0^+_V]\)

B->K^*::Saturation[0^-_A]

\(\textrm{Saturation}[0^-_A]\)

B->K^*::Saturation[1^+_A]

\(\textrm{Saturation}[1^+_A]\)

B->K^*::Saturation[1^+_T5]

\(\textrm{Saturation}[1^+_{T5}]\)

B->K^*::Saturation[1^-_T]

\(\textrm{Saturation}[1^-_T]\)

B->K^*::Saturation[1^-_V]

\(\textrm{Saturation}[1^-_V]\)

B->K^*::T_1(q2)

\(T_1^{B\to K^*}(q^2)\)

q2

B->K^*::T_1[s^1/s^0](q2)

n/a

q2

B->K^*::T_2(q2)

\(T_2^{B\to K^*}(q^2)\)

q2

B->K^*::T_23(q2)

\(T_{23}^{B\to K^*}(q^2)\)

q2

B->K^*::T_23(q2)/T_2(q2)

\(T_{23}(q^2)/T_2(q^2)\)

q2

B->K^*::T_23A[s^1/s^0](q2)

n/a

q2

B->K^*::T_23B[s^1/s^0](q2)

n/a

q2

B->K^*::T_3(q2)

\(T_3^{B\to K^*}(q^2)\)

q2

B->K^*::V(q2)

\(V^{B\to K^*}(q^2)\)

q2

B->K^*::V(q2)/A_1(q2)

\(V(q^2)/A_1(q^2)\)

q2

B->K^*::V[s^1/s^0](q2)

n/a

q2

Pseudo observables representing the full basis of \(B\to K^*\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B\to \bar{D}^*\) transitions and related pseudo-observables

Qualified Name

Description

Kinematic Variables

B->D^*::A_0(q2)

\(A_0^{B\to D^*}(q^2)\)

q2

B->D^*::A_1(q2)

\(A_1^{B\to D^*}(q^2)\)

q2

B->D^*::A_12(q2)

\(A_{12}^{B\to D^*}(q^2)\)

q2

B->D^*::A_12(q2)/A_1(q2)

\(A_{12}(q^2)/A_1(q^2)\)

q2

B->D^*::A_1[s^1/s^0](q2)

n/a

q2

B->D^*::A_2(q2)

\(A_2^{B\to D^*}(q^2)\)

q2

B->D^*::A_2(q2)/A_1(q2)

\(A_2(q^2)/A_1(q^2)\)

q2

B->D^*::A_2[s^1/s^0](q2)

n/a

q2

B->D^*::A_30[s^1/s^0](q2)

n/a

q2

B->D^*::T_1(q2)

\(T_1^{B\to D^*}(q^2)\)

q2

B->D^*::T_1[s^1/s^0](q2)

n/a

q2

B->D^*::T_2(q2)

\(T_2^{B\to D^*}(q^2)\)

q2

B->D^*::T_23(q2)

\(T_{23}^{B\to D^*}(q^2)\)

q2

B->D^*::T_23(q2)/T_2(q2)

\(T_{23}(q^2)/T_2(q^2)\)

q2

B->D^*::T_23A[s^1/s^0](q2)

n/a

q2

B->D^*::T_23B[s^1/s^0](q2)

n/a

q2

B->D^*::T_3(q2)

\(T_3^{B\to D^*}(q^2)\)

q2

B->D^*::V(q2)

\(V^{B\to D^*}(q^2)\)

q2

B->D^*::V(q2)/A_1(q2)

\(V(q^2)/A_1(q^2)\)

q2

B->D^*::V[s^1/s^0](q2)

n/a

q2

B->D^*::a_0[A_1]@HQE

\(a_0^{A_1}\)

B->D^*::a_0[A_5]@HQE

\(a_0^{A_5}\)

B->D^*::a_0[F_1]@BGL

\(a_0^{F_1}\)

B->D^*::a_0[F_2]@BGL

\(a_0^{F_2}\)

B->D^*::a_0[P_1]@HQE

\(a_0^{P_1}\)

B->D^*::a_0[T_1]@HQE

\(a_0^{T_1}\)

B->D^*::a_0[T_23]@BGL

\(a_0^{T_{23}}\)

B->D^*::a_0[T_23]@HQE

\(a_0^{T_{23}}\)

B->D^*::a_0[T_2]@BGL

\(a_0^{T_2}\)

B->D^*::a_0[T_2]@HQE

\(a_0^{T_2}\)

B->D^*::a_0[V_4]@HQE

\(a_0^{V_4}\)

B->D^*::a_1/a_0[A_1]@HQE

\(a_1^{A_1}/a_0^{A_1}\)

B->D^*::a_1/a_0[A_5]@HQE

\(a_1^{A_5}/a_0^{A_5}\)

B->D^*::a_1/a_0[P_1]@HQE

\(a_1^{P_1}/a_0^{P_1}\)

B->D^*::a_1/a_0[T_1]@HQE

\(a_1^{T_1}/a_0^{T_1}\)

B->D^*::a_1/a_0[T_23]@HQE

\(a_1^{T_{23}}/a_0^{T_{23}}\)

B->D^*::a_1/a_0[T_2]@HQE

\(a_1^{T_2}/a_0^{T_2}\)

B->D^*::a_1/a_0[V_4]@HQE

\(a_1^{V_4}/a_0^{V_4}\)

B->D^*::a_1[A_1]@HQE

\(a_1^{A_1}\)

B->D^*::a_1[A_5]@HQE

\(a_1^{A_5}\)

B->D^*::a_1[P_1]@HQE

\(a_1^{P_1}\)

B->D^*::a_1[T_1]@HQE

\(a_1^{T_1}\)

B->D^*::a_1[T_23]@HQE

\(a_1^{T_{23}}\)

B->D^*::a_1[T_2]@HQE

\(a_1^{T_2}\)

B->D^*::a_1[V_4]@HQE

\(a_1^{V_4}\)

B->D^*::a_2/a_0[A_1]@HQE

\(a_2^{A_1}/a_0^{A_1}\)

B->D^*::a_2/a_0[A_5]@HQE

\(a_2^{A_5}/a_0^{A_5}\)

B->D^*::a_2/a_0[P_1]@HQE

\(a_2^{P_1}/a_0^{P_1}\)

B->D^*::a_2/a_0[T_1]@HQE

\(a_2^{T_1}/a_0^{T_1}\)

B->D^*::a_2/a_0[T_23]@HQE

\(a_2^{T_{23}}/a_0^{T_{23}}\)

B->D^*::a_2/a_0[T_2]@HQE

\(a_2^{T_2}/a_0^{T_2}\)

B->D^*::a_2/a_0[V_4]@HQE

\(a_2^{V_4}/a_0^{V_4}\)

B->D^*::a_2[A_1]@HQE

\(a_2^{A_1}\)

B->D^*::a_2[A_5]@HQE

\(a_2^{A_5}\)

B->D^*::a_2[P_1]@HQE

\(a_2^{P_1}\)

B->D^*::a_2[T_1]@HQE

\(a_2^{T_1}\)

B->D^*::a_2[T_23]@HQE

\(a_2^{T_{23}}\)

B->D^*::a_2[T_2]@HQE

\(a_2^{T_2}\)

B->D^*::a_2[V_4]@HQE

\(a_2^{V_4}\)

B->D^*::h_A1(q2)

\(h_{A_1}^{\bar{B}\to D^*}(q^2)\)

q2

B->D^*::h_A2(q2)

\(h_{A_2}^{\bar{B}\to D^*}(q^2)\)

q2

B->D^*::h_A3(q2)

\(h_{A_3}^{\bar{B}\to D^*}(q^2)\)

q2

B->D^*::h_T1(q2)

\(h_{T_1}^{\bar{B}\to D^*}(q^2)\)

q2

B->D^*::h_T2(q2)

\(h_{T_2}^{\bar{B}\to D^*}(q^2)\)

q2

B->D^*::h_T3(q2)

\(h_{T_3}^{\bar{B}\to D^*}(q^2)\)

q2

B->D^*::h_V(q2)

\(h_V^{\bar{B}\to D^*}(q^2)\)

q2

Pseudo observables representing the full basis of \(B\to \bar{D}^*\) form factors. For most pseudo-observables, the specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B_s\to \bar{K}^*\) transitions

Qualified Name

Description

Kinematic Variables

B_s->K^*::A_0(q2)

\(A_0^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::A_1(q2)

\(A_1^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::A_12(q2)

\(A_{12}^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::A_12(q2)/A_1(q2)

\(A_{12}(q^2)/A_1(q^2)\)

q2

B_s->K^*::A_1[s^1/s^0](q2)

n/a

q2

B_s->K^*::A_2(q2)

\(A_2^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::A_2(q2)/A_1(q2)

\(A_2(q^2)/A_1(q^2)\)

q2

B_s->K^*::A_2[s^1/s^0](q2)

n/a

q2

B_s->K^*::A_30[s^1/s^0](q2)

n/a

q2

B_s->K^*::T_1(q2)

\(T_1^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::T_1[s^1/s^0](q2)

n/a

q2

B_s->K^*::T_2(q2)

\(T_2^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::T_23(q2)

\(T_{23}^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::T_23(q2)/T_2(q2)

\(T_{23}(q^2)/T_2(q^2)\)

q2

B_s->K^*::T_23A[s^1/s^0](q2)

n/a

q2

B_s->K^*::T_23B[s^1/s^0](q2)

n/a

q2

B_s->K^*::T_3(q2)

\(T_3^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::V(q2)

\(V^{B_s\to \bar{K}^*}(q^2)\)

q2

B_s->K^*::V(q2)/A_1(q2)

\(V(q^2)/A_1(q^2)\)

q2

B_s->K^*::V[s^1/s^0](q2)

n/a

q2

Pseudo observables representing the full basis of \(B_s\to \bar{K}^*\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B_s\to \phi\) transitions

Qualified Name

Description

Kinematic Variables

B_s->phi::A_0(q2)

\(A_0^{B_s\to \phi}(q^2)\)

q2

B_s->phi::A_1(q2)

\(A_1^{B_s\to \phi}(q^2)\)

q2

B_s->phi::A_12(q2)

\(A_{12}^{B_s\to \phi}(q^2)\)

q2

B_s->phi::A_12(q2)/A_1(q2)

\(A_{12}(q^2)/A_1(q^2)\)

q2

B_s->phi::A_1[s^1/s^0](q2)

n/a

q2

B_s->phi::A_2(q2)

\(A_2^{B_s\to \phi}(q^2)\)

q2

B_s->phi::A_2(q2)/A_1(q2)

\(A_2(q^2)/A_1(q^2)\)

q2

B_s->phi::A_2[s^1/s^0](q2)

n/a

q2

B_s->phi::A_30[s^1/s^0](q2)

n/a

q2

B_s->phi::F_long(q2)

\(\mathcal{F}_0^{B_s\to \phi}(q^2)\)

q2

B_s->phi::F_long_T(q2)

\(\mathcal{F}_{0,T}^{B_s\to \phi}(q^2)\)

q2

B_s->phi::F_long_T(q2)/F_long(q2)

\(\mathcal{F}_{0,T}(q^2)/\mathcal{F}_0(q^2)\)

q2

B_s->phi::F_para(q2)

\(\mathcal{F}_\parallel^{B_s\to \phi}(q^2)\)

q2

B_s->phi::F_para_T(q2)

\(\mathcal{F}_{\parallel,T}^{B_s\to \phi}(q^2)\)

q2

B_s->phi::F_para_T(q2)/F_para(q2)

\(\mathcal{F}_{\parallel,T}(q^2)/\mathcal{F}_\parallel(q^2)\)

q2

B_s->phi::F_perp(q2)

\(\mathcal{F}_\perp^{B_s\to \phi}(q^2)\)

q2

B_s->phi::F_perp_T(q2)

\(\mathcal{F}_{\perp,T}^{B_s\to \phi}(q^2)\)

q2

B_s->phi::F_perp_T(q2)/F_perp(q2)

\(\mathcal{F}_{\perp,T}(q^2)/\mathcal{F}_\perp(q^2)\)

q2

B_s->phi::Saturation[0^+_V]

\(\textrm{Saturation}[0^+_V]\)

B_s->phi::Saturation[0^-_A]

\(\textrm{Saturation}[0^-_A]\)

B_s->phi::Saturation[1^+_A]

\(\textrm{Saturation}[1^+_A]\)

B_s->phi::Saturation[1^+_T5]

\(\textrm{Saturation}[1^+_{T5}]\)

B_s->phi::Saturation[1^-_T]

\(\textrm{Saturation}[1^-_T]\)

B_s->phi::Saturation[1^-_V]

\(\textrm{Saturation}[1^-_V]\)

B_s->phi::T_1(q2)

\(T_1^{B_s\to \phi}(q^2)\)

q2

B_s->phi::T_1[s^1/s^0](q2)

n/a

q2

B_s->phi::T_2(q2)

\(T_2^{B_s\to \phi}(q^2)\)

q2

B_s->phi::T_23(q2)

\(T_{23}^{B_s\to \phi}(q^2)\)

q2

B_s->phi::T_23(q2)/T_2(q2)

\(T_{23}(q^2)/T_2(q^2)\)

q2

B_s->phi::T_23A[s^1/s^0](q2)

n/a

q2

B_s->phi::T_23B[s^1/s^0](q2)

n/a

q2

B_s->phi::T_3(q2)

\(T_3^{B_s\to \phi}(q^2)\)

q2

B_s->phi::V(q2)

\(V^{B_s\to \phi}(q^2)\)

q2

B_s->phi::V(q2)/A_1(q2)

\(V(q^2)/A_1(q^2)\)

q2

B_s->phi::V[s^1/s^0](q2)

n/a

q2

Pseudo observables representing the full basis of \(B_s\to \phi\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B_s\to \bar{D}_s^*\) transitions

Qualified Name

Description

Kinematic Variables

B_s->D_s^*::A_0(q2)

\(A_0^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::A_1(q2)

\(A_1^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::A_12(q2)

\(A_{12}^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::A_12(q2)/A_1(q2)

\(A_{12}(q^2)/A_1(q^2)\)

q2

B_s->D_s^*::A_1[s^1/s^0](q2)

n/a

q2

B_s->D_s^*::A_2(q2)

\(A_2^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::A_2(q2)/A_1(q2)

\(A_2(q^2)/A_1(q^2)\)

q2

B_s->D_s^*::A_2[s^1/s^0](q2)

n/a

q2

B_s->D_s^*::A_30[s^1/s^0](q2)

n/a

q2

B_s->D_s^*::T_1(q2)

\(T_1^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::T_1[s^1/s^0](q2)

n/a

q2

B_s->D_s^*::T_2(q2)

\(T_2^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::T_23(q2)

\(T_{23}^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::T_23(q2)/T_2(q2)

\(T_{23}(q^2)/T_2(q^2)\)

q2

B_s->D_s^*::T_23A[s^1/s^0](q2)

n/a

q2

B_s->D_s^*::T_23B[s^1/s^0](q2)

n/a

q2

B_s->D_s^*::T_3(q2)

\(T_3^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::V(q2)

\(V^{B_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::V(q2)/A_1(q2)

\(V(q^2)/A_1(q^2)\)

q2

B_s->D_s^*::V[s^1/s^0](q2)

n/a

q2

B_s->D_s^*::a_0[A_1]@HQE

\(a_0^{A_1}\)

B_s->D_s^*::a_0[A_5]@HQE

\(a_0^{A_5}\)

B_s->D_s^*::a_0[P_1]@HQE

\(a_0^{P_1}\)

B_s->D_s^*::a_0[T_1]@HQE

\(a_0^{T_1}\)

B_s->D_s^*::a_0[T_23]@HQE

\(a_0^{T_{23}}\)

B_s->D_s^*::a_0[T_2]@HQE

\(a_0^{T_2}\)

B_s->D_s^*::a_0[V_4]@HQE

\(a_0^{V_4}\)

B_s->D_s^*::a_1/a_0[A_1]@HQE

\(a_1^{A_1}/a_0^{A_1}\)

B_s->D_s^*::a_1/a_0[A_5]@HQE

\(a_1^{A_5}/a_0^{A_5}\)

B_s->D_s^*::a_1/a_0[P_1]@HQE

\(a_1^{P_1}/a_0^{P_1}\)

B_s->D_s^*::a_1/a_0[T_1]@HQE

\(a_1^{T_1}/a_0^{T_1}\)

B_s->D_s^*::a_1/a_0[T_23]@HQE

\(a_1^{T_{23}}/a_0^{T_{23}}\)

B_s->D_s^*::a_1/a_0[T_2]@HQE

\(a_1^{T_2}/a_0^{T_2}\)

B_s->D_s^*::a_1/a_0[V_4]@HQE

\(a_1^{V_4}/a_0^{V_4}\)

B_s->D_s^*::a_1[A_1]@HQE

\(a_1^{A_1}\)

B_s->D_s^*::a_1[A_5]@HQE

\(a_1^{A_5}\)

B_s->D_s^*::a_1[P_1]@HQE

\(a_1^{P_1}\)

B_s->D_s^*::a_1[T_1]@HQE

\(a_1^{T_1}\)

B_s->D_s^*::a_1[T_23]@HQE

\(a_1^{T_{23}}\)

B_s->D_s^*::a_1[T_2]@HQE

\(a_1^{T_2}\)

B_s->D_s^*::a_1[V_4]@HQE

\(a_1^{V_4}\)

B_s->D_s^*::a_2/a_0[A_1]@HQE

\(a_2^{A_1}/a_0^{A_1}\)

B_s->D_s^*::a_2/a_0[A_5]@HQE

\(a_2^{A_5}/a_0^{A_5}\)

B_s->D_s^*::a_2/a_0[P_1]@HQE

\(a_2^{P_1}/a_0^{P_1}\)

B_s->D_s^*::a_2/a_0[T_1]@HQE

\(a_2^{T_1}/a_0^{T_1}\)

B_s->D_s^*::a_2/a_0[T_23]@HQE

\(a_2^{T_{23}}/a_0^{T_{23}}\)

B_s->D_s^*::a_2/a_0[T_2]@HQE

\(a_2^{T_2}/a_0^{T_2}\)

B_s->D_s^*::a_2/a_0[V_4]@HQE

\(a_2^{V_4}/a_0^{V_4}\)

B_s->D_s^*::a_2[A_1]@HQE

\(a_2^{A_1}\)

B_s->D_s^*::a_2[A_5]@HQE

\(a_2^{A_5}\)

B_s->D_s^*::a_2[P_1]@HQE

\(a_2^{P_1}\)

B_s->D_s^*::a_2[T_1]@HQE

\(a_2^{T_1}\)

B_s->D_s^*::a_2[T_23]@HQE

\(a_2^{T_{23}}\)

B_s->D_s^*::a_2[T_2]@HQE

\(a_2^{T_2}\)

B_s->D_s^*::a_2[V_4]@HQE

\(a_2^{V_4}\)

B_s->D_s^*::h_A1(q2)

\(h_{A_1}^{\bar{B}_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::h_A2(q2)

\(h_{A_2}^{\bar{B}_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::h_A3(q2)

\(h_{A_3}^{\bar{B}_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::h_T1(q2)

\(h_{T_1}^{\bar{B}_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::h_T2(q2)

\(h_{T_2}^{\bar{B}_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::h_T3(q2)

\(h_{T_3}^{\bar{B}_s\to D_s^*}(q^2)\)

q2

B_s->D_s^*::h_V(q2)

\(h_V^{\bar{B}_s\to D_s^*}(q^2)\)

q2

Pseudo observables representing the full basis of \(B_s\to \bar{D}_s^*\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(B \to \pi \pi\) transitions

Qualified Name

Description

Kinematic Variables

B->pipi::Im{F_long}(q2,k2,z)

\(\mathrm{Im}\,F_0^{B\to \pi\pi}(q^2,k^2,z)\)

q2, k2, z

B->pipi::Im{F_para}(q2,k2,z)

\(\mathrm{Im}\,F_\parallel^{B\to \pi\pi}(q^2,k^2,z)\)

q2, k2, z

B->pipi::Im{F_perp}(q2,k2,z)

\(\mathrm{Im}\,F_\perp^{B\to \pi\pi}(q^2,k^2,z)\)

q2, k2, z

B->pipi::Im{F_time}(q2,k2,z)

\(\mathrm{Im}\,F_t^{B\to \pi\pi}(q^2,k^2,z)\)

q2, k2, z

B->pipi::Im{Res{F_long}}(q2,k2)

\(\mathrm{Res}\,\mathrm{Im}\,F_0^{B\to \pi\pi}(q^2,k^2,z)\)

q2, k2

B->pipi::Im{Res{F_para}}(q2,k2)

\(\mathrm{Res}\,\mathrm{Im}\,F_\parallel^{B\to \pi\pi}(q^2,k^2,z)\)

q2, k2

B->pipi::Im{Res{F_perp}}(q2,k2)

\(\mathrm{Res}\,\mathrm{Im}\,F_\perp^{B\to \pi\pi}(q^2,k^2,z)\)

q2, k2

B->pipi::Im{Res{F_time}}(q2,k2)

\(\mathrm{Res}\,\mathrm{Im}\,F_t^{B\to \pi\pi}(q^2,k^2,z)\)

q2, k2

Pseudo observables representing the \(B \to \pi \pi\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(\Lambda_b \to \Lambda\) transitions

Qualified Name

Description

Kinematic Variables

Lambda_b->Lambda::Saturation[0^+_V]

\(\textrm{Saturation}[0^+_V]\)

Lambda_b->Lambda::Saturation[0^-_A]

\(\textrm{Saturation}[0^-_A]\)

Lambda_b->Lambda::Saturation[1^+_A]

\(\textrm{Saturation}[1^+_A]\)

Lambda_b->Lambda::Saturation[1^+_T5]

\(\textrm{Saturation}[1^+_{T_5}]\)

Lambda_b->Lambda::Saturation[1^-_T]

\(\textrm{Saturation}[1^-_T]\)

Lambda_b->Lambda::Saturation[1^-_V]

\(\textrm{Saturation}[1^-_V]\)

Lambda_b->Lambda::f_long^A(q2)

\(f_0^{A,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_long^T(q2)

\(f_0^{T,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_long^T5(q2)

\(f_0^{T5,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_long^V(q2)

\(f_0^{V,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_perp^A(q2)

\(f_\perp^{A,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_perp^T(q2)

\(f_\perp^{T,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_perp^T5(q2)

\(f_\perp^{T5,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_perp^V(q2)

\(f_\perp^{V,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_time^A(q2)

\(f_t^{A,\Lambda_b\to\Lambda}(q^2)\)

q2

Lambda_b->Lambda::f_time^V(q2)

\(f_t^{V,\Lambda_b\to\Lambda}(q^2)\)

q2

Pseudo observables representing the full basis of \(\Lambda_b \to \Lambda\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(\Lambda_b \to \Lambda_c\) transitions

Qualified Name

Description

Kinematic Variables

Lambda_b->Lambda_c::F(1)

n/a

Lambda_b->Lambda_c::F_inel(1)

n/a

Lambda_b->Lambda_c::G(1)

n/a

Lambda_b->Lambda_c::G_inel(1)

n/a

Lambda_b->Lambda_c::f_long^A(q2)

\(f_0^{A,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_long^T(q2)

\(f_0^{T,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_long^T5(q2)

\(f_0^{T5,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_long^V(q2)

\(f_0^{V,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_perp^A(q2)

\(f_\perp^{A,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_perp^T(q2)

\(f_\perp^{T,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_perp^T5(q2)

\(f_\perp^{T5,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_perp^V(q2)

\(f_\perp^{V,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_time^A(q2)

\(f_t^{A,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Lambda_b->Lambda_c::f_time^V(q2)

\(f_t^{V,\Lambda_b\to\Lambda_c}(q^2)\)

q2

Pseudo observables representing the full basis of \(\Lambda_b \to \Lambda_c\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(\Lambda_c \to \Lambda\) transitions

Qualified Name

Description

Kinematic Variables

Lambda_c->Lambda::Saturation[0^+_V]

\(\textrm{Saturation}[0^+_V]\)

Lambda_c->Lambda::Saturation[0^-_A]

\(\textrm{Saturation}[0^-_A]\)

Lambda_c->Lambda::Saturation[1^+_A,0]

\(\textrm{Saturation}[1^+_{A,0}]\)

Lambda_c->Lambda::Saturation[1^+_A,para]

\(\textrm{Saturation}[1^+_{A,\parallel}]\)

Lambda_c->Lambda::Saturation[1^+_A,perp]

\(\textrm{Saturation}[1^+_{A,\perp}]\)

Lambda_c->Lambda::Saturation[1^+_A]

\(\textrm{Saturation}[1^+_A]\)

Lambda_c->Lambda::Saturation[1^+_T5,0]

\(\textrm{Saturation}[1^+_{T5,0}]\)

Lambda_c->Lambda::Saturation[1^+_T5,para]

\(\textrm{Saturation}[1^+_{T5,\parallel}]\)

Lambda_c->Lambda::Saturation[1^+_T5,perp]

\(\textrm{Saturation}[1^+_{T5,\perp}]\)

Lambda_c->Lambda::Saturation[1^+_T5]

\(\textrm{Saturation}[1^+_{T5}]\)

Lambda_c->Lambda::Saturation[1^-_T,0]

\(\textrm{Saturation}[1^-_{T,0}]\)

Lambda_c->Lambda::Saturation[1^-_T,para]

\(\textrm{Saturation}[1^-_{T,\parallel}]\)

Lambda_c->Lambda::Saturation[1^-_T,perp]

\(\textrm{Saturation}[1^-_{T,\perp}]\)

Lambda_c->Lambda::Saturation[1^-_T]

\(\textrm{Saturation}[1^-_T]\)

Lambda_c->Lambda::Saturation[1^-_V,0]

\(\textrm{Saturation}[1^-_{V,0}]\)

Lambda_c->Lambda::Saturation[1^-_V,para]

\(\textrm{Saturation}[1^-_{V,\parallel}]\)

Lambda_c->Lambda::Saturation[1^-_V,perp]

\(\textrm{Saturation}[1^-_{V,\perp}]\)

Lambda_c->Lambda::Saturation[1^-_V]

\(\textrm{Saturation}[1^-_V]\)

Lambda_c->Lambda::f_long^A(q2)

\(f_0^{A,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_long^T(q2)

\(f_0^{T,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_long^T5(q2)

\(f_0^{T5,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_long^V(q2)

\(f_0^{V,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_perp^A(q2)

\(f_\perp^{A,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_perp^T(q2)

\(f_\perp^{T,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_perp^T5(q2)

\(f_\perp^{T5,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_perp^V(q2)

\(f_\perp^{V,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_time^A(q2)

\(f_t^{A,\Lambda_c\to\Lambda}(q^2)\)

q2

Lambda_c->Lambda::f_time^V(q2)

\(f_t^{V,\Lambda_c\to\Lambda}(q^2)\)

q2

Pseudo observables representing the full basis of \(\Lambda_c \to \Lambda\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(\Lambda_b \to \Lambda^*\) transitions

Qualified Name

Description

Kinematic Variables

Lambda_b->Lambda(1520)::Saturation[0^+_V]

\(\textrm{Saturation}[0^+_V]\)

Lambda_b->Lambda(1520)::Saturation[0^-_A]

\(\textrm{Saturation}[0^-_A]\)

Lambda_b->Lambda(1520)::Saturation[1^+_A]

\(\textrm{Saturation}[1^+_A]\)

Lambda_b->Lambda(1520)::Saturation[1^+_T5]

\(\textrm{Saturation}[1^+_{T_5}]\)

Lambda_b->Lambda(1520)::Saturation[1^-_T]

\(\textrm{Saturation}[1^-_T]\)

Lambda_b->Lambda(1520)::Saturation[1^-_V]

\(\textrm{Saturation}[1^-_V]\)

Lambda_b->Lambda(1520)::f_long12^A(q2)

\(f_0^{A,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_long12^T(q2)

\(f_0^{T,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_long12^T5(q2)

\(f_0^{T5,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_long12^V(q2)

\(f_0^{V,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_perp12^A(q2)

\(f_\perp^{A,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_perp12^T(q2)

\(f_\perp^{T,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_perp12^T5(q2)

\(f_\perp^{T5,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_perp12^V(q2)

\(f_\perp^{V,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_perp32^A(q2)

\(f_{\perp'}^{A,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_perp32^T(q2)

\(f_{\perp'}^{T,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_perp32^T5(q2)

\(f_{\perp'}^{T5,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_perp32^V(q2)

\(f_{\perp'}^{V,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_time12^A(q2)

\(f_t^{A,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Lambda_b->Lambda(1520)::f_time12^V(q2)

\(f_t^{V,\Lambda_b\to\Lambda(1520)}(q^2)\)

q2

Pseudo observables representing the full basis of \(\Lambda_b \to \Lambda^*\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Unitarity Bounds

Qualified Name

Description

Kinematic Variables

B_s0::Saturation[0^+_V]

\(\textrm{Saturation}_{B_{s,0}}[0^+_V]\)

B_s1::Saturation[1^+_A,0]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{A,0}]\)

B_s1::Saturation[1^+_A,para]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{A,\parallel}]\)

B_s1::Saturation[1^+_A,perp]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{A,\perp}]\)

B_s1::Saturation[1^+_A]

\(\textrm{Saturation}_{B_{s,1}}[1^+_A]\)

B_s1::Saturation[1^+_T5,0]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{T_5,0}]\)

B_s1::Saturation[1^+_T5,para]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{T_5,\parallel}]\)

B_s1::Saturation[1^+_T5,perp]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{T_5,\perp}]\)

B_s1::Saturation[1^+_T5]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{T_5}]\)

B_s::Saturation[0^-_A]

\(\textrm{Saturation}_{B_s^0}[0^-_A]\)

B_s^*::Saturation[1^-_T,0]

\(\textrm{Saturation}_{B_s^*}[1^-_{T,0}]\)

B_s^*::Saturation[1^-_T,para]

\(\textrm{Saturation}_{B_s^*}[1^-_{T,\parallel}]\)

B_s^*::Saturation[1^-_T,perp]

\(\textrm{Saturation}_{B_s^*}[1^-_{T,\perp}]\)

B_s^*::Saturation[1^-_T]

\(\textrm{Saturation}_{B_s^*}[1^-_T]\)

B_s^*::Saturation[1^-_V,0]

\(\textrm{Saturation}_{B_s^*}[1^-_{V,0}]\)

B_s^*::Saturation[1^-_V,perp]

\(\textrm{Saturation}_{B_s^*}[1^-_{V,\perp}]\)

B_s^*::Saturation[1^-_V.para]

\(\textrm{Saturation}_{B_s^*}[1^-_{V,\parallel}]\)

B_s^*::Saturation[1^-_V]

\(\textrm{Saturation}_{B_s^*}[1^-_V]\)

D_s0::Saturation[0^+_V]

\(\textrm{Saturation}_{B_{s,0}}[0^+_V]\)

D_s1::Saturation[1^+_A,0]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{A,0}]\)

D_s1::Saturation[1^+_A,para]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{A,\parallel}]\)

D_s1::Saturation[1^+_A,perp]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{A,\perp}]\)

D_s1::Saturation[1^+_A]

\(\textrm{Saturation}_{B_{s,1}}[1^+_A]\)

D_s1::Saturation[1^+_T5,0]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{T_5,0}]\)

D_s1::Saturation[1^+_T5,para]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{T_5,\parallel}]\)

D_s1::Saturation[1^+_T5,perp]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{T_5,\perp}]\)

D_s1::Saturation[1^+_T5]

\(\textrm{Saturation}_{B_{s,1}}[1^+_{T_5}]\)

D_s::Saturation[0^-_A]

\(\textrm{Saturation}_{D_s^0}[0^-_A]\)

D_s^*::Saturation[1^-_T,0]

\(\textrm{Saturation}_{D_s^*}[1^-_{T,0}]\)

D_s^*::Saturation[1^-_T,para]

\(\textrm{Saturation}_{D_s^*}[1^-_{T,\parallel}]\)

D_s^*::Saturation[1^-_T,perp]

\(\textrm{Saturation}_{D_s^*}[1^-_{T,\perp}]\)

D_s^*::Saturation[1^-_T]

\(\textrm{Saturation}_{D_s^*}[1^-_T]\)

D_s^*::Saturation[1^-_V,0]

\(\textrm{Saturation}_{D_s^*}[1^-_{V,0}]\)

D_s^*::Saturation[1^-_V,perp]

\(\textrm{Saturation}_{D_s^*}[1^-_{V,\perp}]\)

D_s^*::Saturation[1^-_V.para]

\(\textrm{Saturation}_{D_s^*}[1^-_{V,\parallel}]\)

D_s^*::Saturation[1^-_V]

\(\textrm{Saturation}_{D_s^*}[1^-_V]\)

b->c::Bound[0^+]@BGL

\(B^{b\to c}_{0^+}\)

b->c::Bound[0^+]@CLN

\(B^{b\to c}_{0^+}\)

b->c::Bound[0^+]@OPE

\(B^{b\to c}_{0^+}\)

b->c::Bound[0^-]@BGL

\(B^{b\to c}_{0^-}\)

b->c::Bound[0^-]@CLN

\(B^{b\to c}_{0^-}\)

b->c::Bound[0^-]@OPE

\(B^{b\to c}_{0^-}\)

b->c::Bound[1^+,T]@CLN

\(B^{b\to c}_{1^+,T}\)

b->c::Bound[1^+]@BGL

\(B^{b\to c}_{1^+}\)

b->c::Bound[1^+]@CLN

\(B^{b\to c}_{1^+}\)

b->c::Bound[1^+]@OPE

\(B^{b\to c}_{1^+}\)

b->c::Bound[1^-,T]@CLN

\(B^{b\to c}_{1^-,T}\)

b->c::Bound[1^-]@BGL

\(B^{b\to c}_{1^-}\)

b->c::Bound[1^-]@CLN

\(B^{b\to c}_{1^-}\)

b->c::Bound[1^-]@OPE

\(B^{b\to c}_{1^-}\)

Pseudo observables arising in the various unitarity bounds of semileptonic form factors.

\(B\)-meson LCDAs

Qualified Name

Description

Kinematic Variables

B::L0@FLvD2022

\(L_0\, \left[ \textrm{GeV}^{-1} \right]\)

mu

B::L1@FLvD2022

\(L_1\, \left[ \textrm{GeV}^{-1} \right]\)

mu

B::L2@FLvD2022

\(L_2\, \left[ \textrm{GeV}^{-1} \right]\)

mu

B::phitilde_+(-i*tau,mu)@FLvD2022

\(\tilde\phi_{B,+}(-i \tau, \mu)\)

tau, mu

B::tau*d_dtau_phitilde_+(-i*tau,mu)@FLvD2022

\(-i \tau \, \tilde\phi^{\prime}_{B,+}(-i \tau, \mu)\)

tau, mu

B::tau^2*d2_d2tau_phitilde_+(-i*tau,mu)@FLvD2022

\(-\tau^2 \, \tilde\phi^{\prime\prime}_{B,+}(-i \tau, \mu)\)

tau, mu

Pseudo observables arising in the description of \(B\)-meson Light-Cone Distribution Amplitudes (LCDAs).

Form factors for \(D \to K\) transitions

Qualified Name

Description

Kinematic Variables

D->K::F_T(q2)/F_plus(q2)

\(F_T(q^2)/F_+(q^2)\)

q2

D->K::F_plus(q2)

\(F_+^{D \to K}(q^2)\)

q2

D->K::F_plus_T(q2)

\(F_T^{D \to K}(q^2)\)

q2

D->K::F_plus_T(q2)/F_plus(q2)

\(F_{+,T}(q^2)/F_+(q^2)\)

q2

D->K::Saturation[0^+_V]

\(\textrm{Saturation}[0^+_V]\)

D->K::Saturation[0^-_A]

\(\textrm{Saturation}[0^-_A]\)

D->K::Saturation[1^+_A]

\(\textrm{Saturation}[1^+_A]\)

D->K::Saturation[1^+_T5]

\(\textrm{Saturation}[1^+_{T5}]\)

D->K::Saturation[1^-_T]

\(\textrm{Saturation}[1^-_T]\)

D->K::Saturation[1^-_V]

\(\textrm{Saturation}[1^-_V]\)

D->K::f_+(q2)

\(f_+^{D \to K}(q^2)\)

q2

D->K::f_+_series(q2)@BFW2010

\(\hat{f}_+^{D \to K}(q^2)\)

q2

D->K::f_+_series_prime(q2)@BFW2010

\(\hat{f}_+^{\prime D \to K}(q^2)\)

q2

D->K::f_-(q2)

\(f_-^{D \to K}(q^2)\)

q2

D->K::f_0(q2)

\(f_0^{D \to K}(q^2)\)

q2

D->K::f_0_series(q2)@BFW2010

\(\hat{f}_0^{D \to K}(q^2)\)

q2

D->K::f_0_series_prime(q2)@BFW2010

\(\hat{f}_0^{\prime D \to K}(q^2)\)

q2

D->K::f_T(q2)

\(f_T^{D \to K}(q^2)\)

q2

D->K::f_T_series(q2)@BFW2010

\(\hat{f}_T^{D \to K}(q^2)\)

q2

D->K::f_T_series_prime(q2)@BFW2010

\(\hat{f}_T^{\prime D \to K}(q^2)\)

q2

Pseudo observables representing the full basis of \(D \to K\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Form factors for \(0 \to \pi \pi\) transitions

Qualified Name

Description

Kinematic Variables

0->pipi::Abs{f_+}^2(q2)

\(|f_+^{0\to \pi\pi}(q^2)|^2\)

q2

0->pipi::Arg{f_+}(q2)

\(\textrm{arg}(f_+^{0\to\pi\pi}(q^2))\)

q2

0->pipi::Im{Res_q2{f_+}}@KKRvD2024

\(\textrm{Im}\,\textrm{Res}_{q^2} (M_\rho^2)\,f_+^{0\to\pi\pi}\)

0->pipi::Im{Res_z{f_+}}@KKRvD2024

\(\textrm{Im}\,\textrm{Res}_{z} (M_\rho^2)\,f_+^{0\to\pi\pi}\)

0->pipi::Im{f_+}(Re{q2},Im{q2})

\(\textrm{Im}(f_+^{0\to\pi\pi}(q^2))\)

Re{q2}, Im{q2}

0->pipi::Re{Res_q2{f_+}}@KKRvD2024

\(\textrm{Re}\,\textrm{Res}_{q^2} (M_\rho^2)\,f_+^{0\to\pi\pi}\)

0->pipi::Re{Res_z{f_+}}@KKRvD2024

\(\textrm{Re}\,\textrm{Res}_{z} (M_\rho^2)\,f_+^{0\to\pi\pi}\)

0->pipi::Re{f_+}(Re{q2},Im{q2})

\(\textrm{Re}(f_+^{0\to\pi\pi}(q^2))\)

Re{q2}, Im{q2}

0->pipi::Saturation@KKRvD2024

\(\textrm{Saturation}\)

0->pipi::b_0@KKRvD2024

\(b_0^{0 \to \pi\pi}\)

0->pipi::b_1@KKRvD2024

\(b_1^{0 \to \pi\pi}\)

0->pipi::r_pi^2@KKRvD2024

\(\langle r_\pi^2 \rangle\, \left[ \textrm{fm}^2 \right]\)

Pseudo observables representing the full basis of \(0 \to \pi \pi\) form factors. The specific parametrization can be chosen via the “form-factors” option.

Observables in scattering processes

Observables in \(ee \to c\bar{c}\) processes

Qualified Name

Description

Kinematic Variables

D^+D^-::Re{rho}(Re{E},Im{E})

\(\mathrm{Re}\rho_{D^+D^-}(E))\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

D^0Dbar^0::Re{rho}(Re{E},Im{E})

\(\mathrm{Re}\rho_{D^0 \bar{D}^0}(E))\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

Jpsi->e^+e^-::decay_width

\(\Gamma(J/\psi \to ee)\, \left[ \textrm{GeV} \right]\)

Jpsi->eff::decay_width

\(\Gamma(J/\psi \to \textrm{eff})\, \left[ \textrm{GeV} \right]\)

Jpsi::total_width

\(\Gamma_{J/\psi}\, \left[ \textrm{GeV} \right]\)

e^+e^-->D^+D^-::Im{T^II}(Re{E},Im{E})

\(\mathrm{Im}T^{II}(e^+e^- \to D^+ D^-)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->D^+D^-::Re{T^II}(Re{E},Im{E})

\(\mathrm{Re}T^{II}(e^+e^- \to D^+ D^-)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->D^+D^-::sigma(E)

\(\sigma(e^+e^- \to D^+ D^-)\, \left[ \textrm{GeV}^{-2} \right]\)

E

e^+e^-->D^+D^-::sigma(Re{E},Im{E})

\(\sigma(e^+e^- \to D^+ D^-)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->D^0Dbar^0::Im{T^II}(Re{E},Im{E})

\(\mathrm{Im}T^{II}(e^+e^- \to D^0 \bar{D}^0)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->D^0Dbar^0::Re{T^II}(Re{E},Im{E})

\(\mathrm{Re}T^{II}(e^+e^- \to D^0 \bar{D}^0)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->D^0Dbar^0::sigma(E)

\(\sigma(e^+e^- \to D^0 \bar{D}^0)\, \left[ \textrm{GeV}^{-2} \right]\)

E

e^+e^-->D^0Dbar^0::sigma(Re{E},Im{E})

\(\sigma(e^+e^- \to D^0 \bar{D}^0)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->ccbar::R(E)

\(R\)

E

e^+e^-->e^+e^-::Im{T^II}(Re{E},Im{E})

\(\mathrm{Im}T^{II}(e^+e^- \to e^+e^-)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->e^+e^-::Re{T^II}(Re{E},Im{E})

\(\mathrm{Re}T^{II}(e^+e^- \to e^+e^-)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->e^+e^-::sigma(E)

\(\sigma(e^+e^- \to e^+e^-)|_{s\textrm{-channel}}\, \left[ \textrm{GeV}^{-2} \right]\)

E

e^+e^-->e^+e^-::sigma(Re{E},Im{E})

\(\sigma(e^+e^- \to e^+e^-)\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->eff::Im{T^II}(Re{E},Im{E})

\(\mathrm{Im}T^{II}(e^+e^- \to \mathrm{eff})\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->eff::Re{T^II}(Re{E},Im{E})

\(\mathrm{Re}T^{II}(e^+e^- \to \mathrm{eff})\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

e^+e^-->eff::sigma(E)

\(\sigma(e^+e^- \to \textrm{eff})\, \left[ \textrm{GeV}^{-2} \right]\)

E

e^+e^-::Re{rho}(Re{E},Im{E})

\(\mathrm{Re}\rho_{e^+e^-}(E))\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

eff::Re{rho}(Re{E},Im{E})

\(\mathrm{Re}\rho_{e^+e^-}(E))\, \left[ \textrm{GeV}^{-2} \right]\)

Re{E}, Im{E}

psi(2S)->e^+e^-::decay_width

\(\Gamma(\psi(2S) \to ee)\, \left[ \textrm{GeV} \right]\)

psi(2S)->eff::decay_width

\(\Gamma(\psi(2S) \to \textrm{eff})\, \left[ \textrm{GeV} \right]\)

psi(2S)::total_width

\(\Gamma_{\psi(2S)}\, \left[ \textrm{GeV} \right]\)

psi(3770)->D^+D^-::decay_width

\(\Gamma(\psi(3770) \to D^+ D^-)\, \left[ \textrm{GeV} \right]\)

psi(3770)->D^0Dbar^0::decay_width

\(\Gamma(\psi(3770) \to D^0\bar{D}^0)\, \left[ \textrm{GeV} \right]\)

psi(3770)->eff::decay_width

\(\Gamma(\psi(3770) \to \textrm{eff})\, \left[ \textrm{GeV} \right]\)

psi(3770)::spectral_function(E)

\(\textrm{spect}_{\psi(3770)}(E)\, \left[ \textrm{GeV}^{-2} \right]\)

E

psi(3770)::total_width

\(\Gamma_{\psi(3770)}\, \left[ \textrm{GeV} \right]\)

The “assume_isospin” option equalises the couplings of isospin-related channels.